






firmed by FRET experiments (40). These results are consistent
with the LH C-terminal domain behaving as an intrinsically
disordered domain (41).

Thus, LH refines the path of linker DNAwithin the chroma-
tin fiber by forming rigid stems that reduce the separation angle
of entering/exiting DNA (35, 42). Additionally, LH shields the

FIGURE 5. Chromatin organization: ideal and deduced models for relaxed chromatin and stretched chromatin fibers. A–C, solenoid, zigzag, and heter-
omorphic models, respectively. A, ideal model (parallel and perpendicular views) for a 48-core 209-bp one-start solenoid fiber with six nucleosomes/turn in
which DNA linkers (DNA segments shown in red connecting nucleosomes) are bent and neighboring nucleosomes (i�1 interactions (int.)) are in the closest
contact. B, ideal two-start zigzag model (parallel and perpendicular views) for a 48-core 209-bp fiber in which DNA linkers are straight and i�2 nucleosomes are
in the closest contact. C, heteromorphic architecture predicted by modeling and Monte Carlo simulations of 48-core 209-bp arrays with LH at room temper-
ature (293 K), 0.15 M NaCl, and low concentration of magnesium ions and confirmed by cross-linking experiments (29). DNA linkers are shown in red, alternate
nucleosomes are shown in white and blue, and LHs are shown as turquoise spheres. The view parallel to the fiber axis (left) and two enlarged nucleosome triplets
are shown. Both straight and bent DNA linkers occur. In all views, connecting DNA linkers and DNA wrapped around the nucleosomes are colored in red; odd
and even nucleosomes are white and blue, respectively; and LHs are shown in turquoise. The close-ups of trinucleosomes show both intra- and internucleosome
interactions. The core histone tails are colored yellow (H2A), red (H2B), blue (H3), and green (H4). D, effect of NRL (173, 209, and 218 bp) and LH on the structure
of the chromatin fiber as predicted from Monte Carlo simulations of 48-core arrays at 0.15 M monovalent ions (72). The center images also show the individual
histone tail beads. Color coding is as described above. E, effect of various dynamic LH binding mechanisms on the chromatin unfolding mechanism for 24-core
209-bp fibers as revealed from stretching simulations mimicking single-molecule pulling experiments at monovalent salt conditions of 0.15 M (43). Panel 1,
resulting force extension curves for fibers with one LH rigidly fixed to each core (blue curve) versus LHs that bind/unbind dynamically (average concentration
of 0.8 LH/core; red curve) with added divalent cations. Dynamic LH binding/unbinding dramatically decreases the fiber stiffness and the forces needed for
unfolding with respect to fibers with fixed LH, improving the agreement with experiments (33) significantly. pN, piconewtons. Panel 2, images representing
unfolding intermediates at different forces along the dynamic LH curve in panel 1. Intermediates reveal “superbead-on-a-string” structures in which compact
clusters coexist with extended fiber regions. Panel 3, effect of fast and slow dynamic LH binding/unbinding during chromatin fiber unfolding without divalent
ions (43). The slow-rebinding LH molecules cause a more dramatic softening effect than a pool of fast-rebinding LH, whereas fast LH rebinding promotes
formation of superbead-on-a-string conformations with compact clusters. Together, fast- and slow-binding LH pools provide facile fiber unfolding through
heteromorphic superbead conformations.
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electrostatic repulsion of the linker DNAs and promotes linker
DNA bending. Still, recent single-molecule force studies (33)
suggested a stabilizing rather than structure-determining effect
of LH on higher order chromatin. This difference may reflect
the intrinsic ability of LH to rearrange under the applied force
and thus different organization of static and dynamic chroma-
tin (Fig. 5E) (43).
Histone Tails BridgeNucleosomes—TheN-terminal domains

of all core histones and the C-terminal domain of histone H2A
lack a defined secondary structurewhen free in solution and are
highly mobile when assembled into nucleosomes (15). These
histone tails are highly positively charged but make only mar-
ginal contributions to individual nucleosome structure. Still,
they are required for formation of higher order chromatin
structures (44, 45), probably due to mediation of internucleo-
some interactions. Apossiblemolecularmechanismof intrinsic
nucleosome core interactions emerged from an x-ray analysis
of nucleosome core crystals where the histone H4 N-terminal
tail from one nucleosome contacts an acidic patch formed by
histones H2A and H2B in a neighboring nucleosome (9). Evi-
dence for H4 tail-H2A interactions was provided by cross-link-
ing studies, suggesting both intra- and inter-array contacts (46,
47).
Recent cross-linking studies demonstrated that the same tail

domains of core histones can alternate between intra- and
inter-array interactions (47–49); we designate these as cis- and
trans-interactions, respectively (see hypothetical model in Fig.
2). The inclusion of core histone variants (50) or mutations
(51) altering the histone octamer surface can dispatch inter-
nucleosome interactions toward either cis-interactions and
intra-array folding or trans-interactions and inter-array
oligomerization.
Histone Post-translational Modifications Directly Alter

Nucleosome Interactions and Chromatin Folding—Post-trans-
lational modifications (PTMs) of histone proteins have
emerged as an important mechanism for modulating chroma-
tin structure and function (52, 53). Although many of the his-
tone PTMs affect chromatin structure and function by recruit-
ing additional chromatin-remodeling or architectural factors
consistent with the histone code hypothesis (54), histone acety-
lation and phosphorylation alter the protein charge and chem-
ical properties of the amino acid side group and may directly
affect internucleosome interaction and higher order folding.
For example, acetylation of Lys-16 in histone H4 was suffi-

cient to destabilize salt-dependent folding of a nucleosome
fiber (55). Surprisingly, charge alterations could not reproduce
the action of Lys-16 acetylation; this suggests a highly specific
interaction of the N-terminal domain with the histone octamer
surface (56), perhaps dependent on formation of �-helical sec-
ondary structure by the histone H4 N-terminal tail (57). The
other sites of histone N-terminal tail acetylation can also
directly alter the folding and compaction in chromatin (58) and
apparently act in a less specific manner in both cis- and trans-
interactions (49). These modifications are likely functionally
redundant as demonstrated by mutagenesis in vivo (59) and
histone tail swapping experiments (60). This non-specificity is
consistent with primarily electrostatic interactions of the
N-terminal tails with other histones and DNA (61).

Besides acetylation, residue substitution experiments in
which histone H4 was trimethylated at Lys-20 and probed by
array sedimentation showed increased compaction of nucleo-
some arrays (11). Although themechanism is unclear, the posi-
tion of Lys-20 in the histoneH4 tail (residues 16–20)may affect
the internucleosome interaction with a surface of histone H2A.
Moreover, ubiquitylation of histone H2B causes a notable dis-
ruption of a chromatin fiber structure through a mechanism
distinct from histone acetylation (62).
Although the above studies were conducted on nucleosome

arrays devoid of LH, other experiments have shown that his-
tone PTMs can also override LH-stabilized fiber compaction.
For example, citrullination of arginines in histone H3 and H4
N-terminal tails (63) and in vitro acetylation of chromatin fibers
(64) or acetylation mimics within the H4 tail domain (49) over-
ride the strong stimulation of condensation of nucleosome
arrays caused by LHs. Thus, histone acetylation may alter the
secondary structure of the core histone tail domains in a way
that does not simply abolish internucleosome interactions but
actively interferes with other stabilizing chromatin interactions
(65).
Effect of Nucleosome Positioning and NRL on Chromatin

Compaction—AlthoughNRL variationswere initially proposed
to alter chromatin fiber diameter proportionally to linker DNA
length (21), more recent ultrastructural studies suggest a step-
wise increase in the chromatin diameter from�33 nm for chro-
matin with 30–60-bp linkers to �42 nm for 70–90-bp linkers
(26). The observed structural transitionswere explained by top-
ological variations of linker folding from the helical ribbon con-
figuration to a crossed zigzag configuration (66), as well as by
polymorphic chromatin models where the nucleosome linkers
were tangentially oriented in the fiber and did not cross the
fiber axis (67). For shortNRLs typical of yeast andneuronal cells
(167 bp), a smaller diameter of �21 nmwith a zigzag morphol-
ogy (68) was obtained, consistent with nucleosome arrange-
ment in the tetranucleosome x-ray crystal structure (25).
Linker length variations were also predicted to have a strong

effect on the chromatin higher order structure via altered inter-
nucleosomeorientations (30, 31, 69, 70).However, experiments
on nucleosomes with NRLs varied in a fixed patternmimicking
natural variations (207 � 2) showed similar folding to uniform
arrays of the same length (29). Consistent with these findings,
modeling work has suggested that whereas short linkers are too
rigid and long linkers are too flexible, medium values (in the
range of 200–210 bp) can adopt variable conformations to opti-
mize overall fiber compaction (Figs. 2 and 5D) (71, 72).

Modeling Approaches

Challenges and Approaches—As discussed in a recent mod-
eling and simulation perspective (73), our computing power
and algorithms have improved markedly over the past decade,
rendering problems of greater scientific significance solvable
with enhanced confidence and accuracy. Although all-atom
simulations of nucleic acids have steadily increased in accuracy,
scope, and length (e.g. microsecond simulations of solvated
B-DNA dodecamer (73)), coarse-grained models are required
to simulate macromolecular chromatin systems that are too
large for atomic models and highly dynamic. Creation of such
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models is required to resolve key functional components of the
molecular system while approximating others. Ultimately,
modeling the various folded states of the chromatin fiber
requires multiscale methods to bridge the resolution among
different spatial and temporal scales.
As summarized in Fig. 4 (and in the indicated references),

several groups have developed different models with various
levels of complexity and involving different simulation tech-
niques. In most of these models, nucleosome geometries are
simplified by using a few key variables (e.g. nucleosome posi-
tions and charges and angular orientation between thewrapped
and existing/entering DNA), water is treated implicitly, and
configurations are generated by Monte Carlo sampling or via
analytic formulations that sample various parameter ranges.
Model validation is performed using available experimental
data, such as salt-induced compaction of oligonucleosomes to
reproduce experimental sedimentation coefficients and
nucleosome packing ratios, diffusion behavior of oligonucleo-
somes, salt-dependent extension of histone tails measured by
the tail-to-tail diameter of the core and radii of gyration for
mononucleosomes, LH orientations, and internucleosome
interaction patterns (see Ref. 61 for a summary of such model
validation details and available experiments). Overall, such
modeling is particularly useful for probing structural and ener-
getic effects as a function of certain parameters or conditions
like the ionic salt concentration, NRL, and the presence of LHs.
Simulations can also suggest specific configurations to help
interpret single-molecule pulling experiments by associating
specific force versus extension data points with fiber conforma-
tions, as shown in Fig. 5.
Effect of Ionic Conditions, NRL, and LH on Fiber Architec-

ture—As an example of these parameter dependences,Wong et
al. (67) showed the dependence of fiber width on the linker
DNA length and the orientation of LHs.Modeling of simplified
coarse-grained nucleosome models by Rippe and co-workers
(74) reinforced the large effect of the linker length and nucleo-
some twist angles on the extent of fiber compaction.Mesoscale
modeling combined with experimental cross-linking studies
that measured nucleosome interaction patters complemented
by EM visualization (29) revealed a compaction pattern as LH
and divalent ions are added: an open, disordered, zigzag orga-
nization for chromatin fibers without LH rearranges to form
compact zigzag forms with LHs under monovalent ion condi-
tions.With divalent ions, further compaction arises by bending
a small portion of the linker DNAs to form a heteromorphic
architecture (Fig. 5C).
In our model (61, 72), each nucleosome histone octamer

(without protruding tails and with the wound DNA) is treated
as an irregularly shaped electrostatic charged object with point
charges parameterized to reproduce the atomistic electric field.
Each flexible histone tail is modeled as a chain of spherical
beads representing five amino acids each, and LHs aremodeled
using three beads representing theC-terminal, N-terminal, and
globular domains (Fig. 5D). The linker DNA connecting the
nucleosomes is treated using the wormlike chain elastic
approximation for DNA. The total energy consists of bending,
stretching, torsion, excluded volume, and electrostatic contri-
butions (43, 61).

Studies investigating the folding of the chromatin fiber as a
function of NRL, with andwithout LH, suggested that short-to-
mediumNRL fibers (173–209 bp) with LH condense into irreg-
ular zigzag structures and that solenoid features are viable only
for longer NRLs (218–226 bp) (Fig. 5D) (71, 72). These studies
suggest that medium NRL favors chromatin compaction
throughout the cell cycle, unlike short and long NRL fibers:
shortNRL arrays fold into narrow fibers, whereas longNRLs do
not easily lead to high packing ratios due to possible linkerDNA
bending. Furthermore, the histone tails influence fibers with
mediumNRLmore easily. The small compaction effect of LH in
short linker fibers is consistent with experiments (33, 68).
Recent modeling studies that mimic chromatin stretching

experiments have proposed interesting roles for LH in fiber
compaction under various dynamic mechanisms. A wealth of
chromatin pulling experiments as summarized recently (75, 76)
has emphasized the need for furthermechanistic and structural
interpretation of the force versus extension curves. For exam-
ple, what factors stiffen the chromatin fiber, and what do the
force versus extension curves imply regarding chromatin struc-
ture? Our studies focused on analyzing the stretching response
of chromatin fibers as a function of the NRL and LH presence,
including various binding mechanisms for LH. Indeed, LHs are
known to be dynamic, with different binding ratios (77, 78).
Because fiber resistance to stretching decreases markedly with
dynamic compared with static LHs due to possible stem rear-
rangements in the former (Fig. 5E, panel 1), we have suggested
that dynamic LH binding may be an essential mechanism to
soften chromatin fibers and allow unfolding at typical forces
corresponding to natural molecular motors (Fig. 5E) (43).
Moreover, among the dynamic LHs, pools of fast- and slow-
binding LHs may cooperatively induce fiber unfolding at low
forces: lower binding affinity softens fibers due to stem desta-
bilization, whereas higher binding affinity promotes superbead
constructs that combine nucleosome clusters with stretched
fiber regions. The combination may offer both flexibility and
selective DNA exposure (Fig. 5E) (43). These results thus sug-
gest how modeling can help identify the factors that stiffen or
soften chromatin fibers, as well as propose conformations and
pathways linked to experimental force versus extension curves.
In particular, our conformations are consistent with an overall
zigzag fiber arrangement (Fig. 5E) rather than solenoid inter-
pretation (33).

Tertiary and Higher Order Structures, in Situ Structures,
and Functional Connections

Higher Order Structures beyond the Chromatin Fiber—Fold-
ing of the nucleosome array into the 30-nm fiber is far from
achieving the 5 orders of spatial compaction realized by the
chromosomes near the end of the cell cycle (Fig. 1). Various
looping, scaffolding, wrapping, and specific contacts with other
proteins and possibly RNA have been suggested for this higher
folding to occur.
In vitro, in the presence of divalent cations in excess of 2 mM,

aswell as in situ, in interphase eukaryotic cells, chromatin fibers
self-interact to form tertiary chromatin structures (1, 6, 45).
This type of chromatin compaction may account for the in situ
chromatin fibers that are partially interdigitated (79) and in
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vitro chromatin structures with diameters of �30 nm (80, 81).
In vitro, the formation of such structures is promoted by the
same factors as the secondary structure: divalent cations, inter-
actions between core histone N-terminal tails (46, 82), LHs
(83), and heterochromatin architectural factors such asMENT,
MeCP2, and Sir3 (84, 85). Modeling shows that longer nucleo-
some repeats typical of terminally differentiated cells promote
lateral self-association of the chromatin fibers and nucleosome
interdigitation (74).
Various ultrastructural studies, such as cryo-EM tomogra-

phy (79), cryo-EM (86), electron spectroscopic imaging (87),
and small-angle x-ray scattering (88, 89), have not yet provided
a uniform view of chromatin organization in the interphase
state. These techniques revealed 30-nm fibers in a number of
cells with condensed chromatin, such as Echinodermata sperm,
chicken erythrocytes, and mouse retina (79, 88, 90). However,
chromatin in proliferating cells showed thicker (100-nm diam-
eter) “chromonema fibers,” with none or few 30-nm structures
detected (91–93). Even in themost condensedheterochromatic
areas, no regular fibers of 30 nm in diameter were observed in
the nuclei for interphase cells (94), thus raising the possibility
that the 30-nm fiber is not a predominant structure in the inter-
phase nucleus.
Dynamics of Higher Order Chromatin Folding—Although

earlier structural models suggested a hierarchy of highly
ordered static structures for eukaryotic chromatin, recent stud-
ies have revealed chromatin organization to be highly dynamic.
This mobility includes the spontaneous reversible unfolding of
theDNA segments fromnucleosomes (16, 17) and oligonucleo-
some arrays (95), the transient association of chromatin archi-
tectural proteins like heterochromatin protein HP1 (96) with
chromatin, and the accessibility of condensed chromatin inside
metaphase chromosomes for extrachromosomal proteins (97).
In particular, as discussed above in connection with Fig. 5E, LH
is highly dynamic, binding to or unbinding from the nucleo-
somes rapidly (78, 98, 99), and LH binding dynamics have been
suggested to affect fiber compaction (100). Modeling has sug-
gested that fast- and slow-binding populations of LH (77)
merge optimally in heterogeneous forms of fibers tomake chro-
matin more amenable to molecular motors (Fig. 5E, panel 3)
(43).
The dynamic nature of chromatin necessitates developing

new structural and modeling approaches to capture transient
structural intermediates of chromatin folding in vitro and in
vivo and to relate them to existing nucleosome structures, ener-
getically favorable molecular models, and physical maps and
bioinformatic analyses of native chromatin structures. This
convergence of experiments and modeling will undoubtedly
help translate the linear organization of the nucleosomes and
their interaction in three-dimensional space to the hierarchy of
chromatin and DNA conformations associated with key regu-
latory processes via modulation of chromatin accessibility to
nuclear proteins and mediation of epigenetic interactions.
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