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The growing interest in the complexity of biological interactions
is continuously driving the need to increase system size in bio-
physical simulations, requiring not only powerful and advanced
hardware but adaptable software that can accommodate a large
number of atoms interacting through complex forcefields. To
address this, we developed and implemented strategies in the
GENESIS molecular dynamics package designed for large numbers
of processors. Long-range electrostatic interactions were para-
llelized by minimizing the number of processes involved in com-
munication. A novel algorithm was implemented for nonbonded
interactions to increase single instruction multiple data (SIMD)
performance, reducing memory usage for ultra large systems.

Introduction

Molecular dynamics (MD) is a powerful tool to understand
biological phenomena in atomistic detail. From the first MD
simulation of a protein,"" the spatiotemporal scale has increased
significantly due to various hardware and software developments:
Taiji et al. accelerated MD by developing specialized hardware,
MDGRAPE-3 for time-consuming nonbonded interactions.”’
ANTON, which is also specialized to MD simulations, achieved
more than 100 times speed-up compared to conventional com-
puters, simulating 1 millisecond protein dynamics in explicit
solvent®! The graphics processing unit (GPU) or Intel Xeon Phi
have also become very promising in the context of extending
the time scale of MD simulations.®'¥ As a result of recent devel-
opments in hardware and software, large systems consisting of
64 and 100 million atoms can be simulated with MD.l'>'®
Currently, the development of MD to extend the timescale and
the system size is becoming more important due to novel experi-
mental methodologies in biology. An example of such progress in
this area is a better understanding of structural genomics and
chromatin dynamics; chromatin is a biological DNA-protein com-
plex that provides compaction of the genomic information in the
nucleus of a cell. In this compact structure, DNA wraps around
histone proteins—a functional unit known as the nucleosome—
in a controlled and structured manner, due to interactions
between DNA and proteins, and higher level of compaction is
achieved through specific protein-protein and protein-DNA inter-
actions. What exactly drives the compaction of chromatin and
how it takes place is unclear. With recent advances in sequencing
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Memory usage for neighbor searches in real-space nonbonded
interactions was reduced by approximately 80%, leading to sig-
nificant speedup. Using experimental data describing physical 3D
chromatin interactions, we constructed the first atomistic model
of an entire gene locus (GATA4). Taken together, these devel-
opments enabled the first billion-atom simulation of an intact
biomolecular complex, achieving scaling to 65,000 processes
(130,000 processor cores) with 1 ns/day performance. Publi-
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technology, a deluge of 3D cross-linking data (chromosome
conformation capture, or single-cell Hi-C) has revealed new
insights into chromatin structure. In Hi—C experiments, the
probability, Pj, that two genomic loci i and j are in contact can
be inferred. From these data, one may construct a contact
map: a two-dimensional representation of a three-dimensional
structure. Genome wide contact maps have revealed the exis-
tence of chromosome territories (also known as topologically
associated domains or TADs) and have established the hierar-
chical nature of chromatin structure on the megabase scale.
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This complex hierarchical structure presumably results from
the requirement of several meters of DNA to be compacted in
a micron-sized nucleus in human cells. Most remarkably this
compaction occurs in the crowded space of a nucleus without
topological entanglement or knot formation. It is now widely
believed that this is achieved by the chromatin adopting a
fractal globule conformation. The hierarchical structure of
chromatin is not just a by-product of compaction; it also plays
a pivotal role in a range of genomic functions, most notably in
gene transcription, DNA replication, and repair. Yet despite
recent advancements in chromatin conformation capture and
high-resolution direct imaging experiments (such as Fluores-
cence in situ hybridization or FISH), chromatin structure
remains rather poorly understood. In part this is due to the
dramatic changes in chromatin structure during the cell cycle,
as well as the knowledge of cells, which do not follow the
established levels of chromatin organization.

In MD, the general protocol consists of (1) evaluation of
potential energy and force, (2) integration of coordinates and
momenta, and (3) thermostat or barostat calculations. For
biological MD simulations with explicit water molecules, the
potential energy function consists of bonded (bond, angle,
proper and improper dihedral angle) and nonbonded terms
(electrostatic and van der Waals). The computational cost of
the bonded interactions is O(N) and takes part in a small frac-
tion of the total simulation time. The main bottleneck in MD
stems from the evaluation of the nonbonded interactions.
The computational cost of the nonbonded interactions is
O(N?). Because the van der Waals interactions decay rapidly
according to the pairwise distance, they can be computed
with O(N) computational cost by applying a cutoff value beyond
which the interaction energy is zero. The electrostatic energy is
decomposed into the real- and reciprocal-space interactions
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using the particle mesh Ewald (PME) scheme."”'® The real-space
interaction energy decays rapidly as the pairwise distance, so
we can apply the same cutoff value as for the van der Waals
interaction. Long-range interactions are described in a recipro-
cal space using fast Fourier transform (FFT), improving the
computational cost to O(NlogN). For small systems, the real-
space nonbonded interaction becomes the main computa-
tional challenge. Conversely, the main bottleneck moves to
evaluation of reciprocal space nonbonded interactions as we
increase the number of computational processes or increase
the target system size.

We have developed the GENESIS MD software to overcome
current size limitations of MD."">2” The new domain decom-
position scheme in GENESIS produces highly efficient para-
llelization in real-space calculation, enabling simulations of
very large systems.?"! Efficient FFT parallelization schemes
have been developed in GENESIS for high performance on
the K computer.?? Due to DNA being a highly charged poly-
mer, the accurate calculation of long-range electrostatic inter-
actions is required, whereby the FFT becomes the main
bottleneck of parallelization. Here, we discuss effective FFT
parallelization schemes in GENESIS that can be used on Intel
Xeon Phi processors for large-scale MD simulations. We also
discuss the new implementation of nonbonded interactions
in GENESIS to increase single instruction multiple data (SIMD)
performance on Intel Xeon Phi. Our new developments are
tested on the second-generation Intel Xeon Phi processors
(code name: Knights Landing or KNL) on the Oakforest-PACS
and Trinity Phase 2 platforms. We also constructed an atomic
model of an entire gene locus (83 kilobases (kb) of DNA com-
plexed with 427 nucleosomes, Fig. 1) consisting of more than
1 billion atoms and performed simulations on Trinity Phase
2 platform.

(b)

Figure 1. Explicit solvent simulations of GATA4 gene locus. a) Structure of fully solvated GATA4 gene in a periodic simulation cube, consisting of 83 kilobases
of double-stranded helical DNA wrapped around 427 nucleosomes. b) A more detailed view of the gene structure. Protein tails used for programming gene
expression protrude from each nucleosome. In a) and b), water molecules are not shown for image clarity. lons are shown in a).
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Atomistic model of GATA4 system

Modeling. We constructed a coarse-grained 3D scaffold using a
coarse-grained mesoscale model of chromatin that led to the
identification of a novel folding motif, hierarchical looping,
where chromatin fibers undergo folding to produce layered net-
works of loops (citations to be added). By combining experimen-
tally measured ultrastructural parameters with their previously
verified mesoscale chromatin model, a detailed mesoscale
model of the GATA4 gene locus was built (Fig. 1) and used to
derive atomic resolution coordinates. The model was equili-
brated resulting in a compact globular structure exhibiting hier-
archical looping, where the positions of the loops agree with 3C
data, and local folding agrees in vivo experiments. Our meso-
scale chromatin model consists of three particle types: linker
DNA, nucleosome core particle pseudo-charges, and flexible his-
tone tails.*® Linker DNA is treated as a modified worm-like
chain. The nucleosome core particles are represented as electro-
static objects, with shape- and surface-derived from the discrete
surface charge optimization (DiSCO) algorithm that approximates
the electric field of the atomic nucleosome by Debye-Hiickel
pseudo-charges along the surface of the complex as a function
of monovalent salt.”? Flexible histone tails are coarse grained so
that 50 beads represent the 8 histone tails, where each bead rep-
resents about 5 amino acid residues.** The mesoscale model
allows the direct placement of all-atom nucleosomal DNA and
protein molecular structures in space, resulting in the atomistic
model of the GATA4 system.

Model generation of macromolecular complexes & automated
clash detection. Techniques such as X-ray crystallography, NVIR
spectroscopy, and electron microscopy are just some of the
methods used to determine protein structure. However, such
experimental data are typically insufficient to build a fully atomis-
tic model—one must combine experimental data with homology
modeling techniques (a reconstruction of a protein structure
based on its amino acid sequence and knowledge of the struc-
ture of a related homologous protein). The method to generate
a fully atomistic model (for a detailed description, see Carter &
Tung®) can be outlined as follows: (1) A helical curve with a
specified pitch and diameter is generated: for nucleosomal DNA
a pitch of 28 A and a diameter of 106 A are chosen based on
crystal data. (2) The curve is digitized into 3.4 A segments to rep-
resent the base-pair steps of the molecule. (3) The segments
are mapped into a set of base-pair parameters to generate the
fully atomistic model. The synthesis of homology techniques
and experimental data is rarely flawless, and often steric cla-
shes (which here we define as two atoms being separated by
a distance less than 0.9 A) are introduced between atoms. This
is highly undesirable as many MD simulation packages are
unable to correct for such clashes at the minimization stage
and the high Van der Waals repulsion energy of the clashing
atoms would lead to simulation failure. In light of this prob-
lem, we develop a procedure to identify steric clashes in a
general DNA-protein structure and automatically adjust atomic
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positions, without violating the known geometric constraints,
such that all clashes are removed and corrected for. The DNA
backbone is remarkably rigid. Besides the puckering behavior
exhibited by the deoxyribose ring, the only other significant
freedom of rotation lies in the phosphate group, about the
03'-C5’ axis. In principle this rotational freedom, denoted ¢,
can take on any value ¢ in [-180° 180°), and this can be
exploited for the purposes of clash correction (for geometric
details see ref. [25]). Protein structures, unlike DNA, are gener-
ally more flexible, yielding more ways in which atomic posi-
tions can be modified to remove steric clashes. However, in
practice we found that modifying just one torsion angle, den-
oted y—where y in [-180°, 180°), of the bond connecting the
amino acid side-group to the residue was sufficient to remove
all steric clashes in our models when combined with ¢ rotations.
The clash correction program was predominantly written in
Python, with calls to Fortran subroutines, which calculate new
atom positions upon changing ¢ or . Figure 2 shows a flow dia-
gram of the program'’s operation.

Major characteristic of GENESIS for large-scale MD

Like existing MD programs for large-scale biological simulations
(such as GROMACS"® and NAMD'™®)), GENESIS supports hybrid
parallelization (combination of shared and distributed memory
parallelization) for efficient usage of CPU cores. Based on this,
for large-scale MD, GENESIS has the following major innovative
characteristics:

Inverse lookup table”®”’, GENESIS makes use of a lookup table
for energy and force evaluation of short-range nonbonded
interactions instead of using direct calculations. The lookup
table is based on the inverse distance squared calculation,
which allows to perform accurate calculations for very short
pairwise distances by assigning many table points, whereas
fast evaluation of energy/force is available by reducing table
points for longer pairwise distances.

Domain decomposition with midpoint cell method". In the mid-
point cell method, each rank has the data of cells in the
corresponding subdomain and adjacent cells of the subdomains.
It sends/receives data to/from the neighboring subdomains. The
nonbonded interaction is parallelized by distributing the cell pair
lists (or midpoint cell indices) over OpenMP threads. Integration
and constraint evaluations are parallelized by distributing the cell
indices in each subdomain over OpenMP threads. By adopting
the midpoint cell method with the volumetric decomposition of
FFT described below, we can assign the same domain decompo-
sition between real- and reciprocal-spaces, skipping communica-
tions of charge grid data before FFT.

Volumetric decomposition of FFT?,  GENESIS makes use of the
volumetric decomposition FFT where the reciprocal space is
decomposed in all three dimensions. This requires more fre-
quent MPI_Alltoall communications than slab or pencil
decompositions. However, this scheme is more favorable for
large systems on massively parallel supercomputers because
the amount of data in each communication is much smaller
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are correctable through a phosphate
group rotation?

For each such clash vary the angle ¢ (of the phosphate group involved
in the clash) in 5 degree increments between — 180 and + 180 degrees.
Identify the ¢ angle which maximises the minimum distance between
atoms in the vicinity (6 A) of the clashing atoms. Update the PDB
structure using the new value of ¢.

Are there steric clashes which
are correctable through a side
group rotation?

For each such clash vary the torsion angle y (of the side group involved

in the clash) in 5 degree increments between — 180 and + 180 degrees.
Identify the y angle which maximises the minimum distance between _—
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Figure 2. Automated clash detection: flow diagram of
the operation of the clash correction script. Clashes
correctable by a phosphate group rotation are those
involving P, O5', C5', C4', C3', O3’ type atoms on the
DNA backbone. All other clashes involve at least one
atom in a protein side group and can be corrected by
a side group rotation. The vicinity of a clash is defined
to be all atoms within a 6 A radius of the atoms

atoms in the vicinity (6 A) of the clashing atoms. Update the PDB
structure using the new value of y.

than the other decompositions. Moreover, we can skip com-
munication of charge data before FFT by assigning the same
domain decompositions between real and reciprocal spaces.
Specifically, let us assume that we decompose the overall space
by P MPI processes. If P is factorized by P=P,x P, X P, we
decompose the space by P, in x dimension, P, in y dimension,
and P, in z dimension. To perform the FFT in each dimension,
we assign MPI_Alltoall communication such that each process
has global data in the specified dimension. According to our vol-
umetric decomposition FFT scheme (1d_Alltoall), forward FFT
consists of eight computation/communication procedures out-
lined in Appendix A.

In this scheme, we require 5 one-dimensional MPI_Alltoall
communications. Intuitively, the procedure of the backward FFT
(BFFT) is opposite to the forward FFT; this decomposition
scheme has several advantages over other schemes from the
scalability point of view despite of more frequent communica-
tions. On the one hand, the number of processes involved in
communications is proportional to the cubic root of P. On the
other hand, it is proportional to P or the square root of P in the
case of slab or pencil decomposition FFT. When P is sufficiently
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involved in the clash. [Color figure can be viewed at
wileyonlinelibrary.com]

large, the communication cost could be reduced by more
frequent communication with small number of processes
involved in the communication. We also utilize a volumetric
decomposition scheme (see Appendix A) with reduced fre-
qguency of communications, while the number of processes
involved in the communication is larger (2d_Alltoall).

In this scheme, we require 3 one-dimensional MPI_Alltoall
communications. The 2d_Alltoall scheme is similar to pencil
decomposition FFT, if we neglect the first MPI_Alltoallx commu-
nication. According to our investigations of 1d_Alltoall and
2d_Alltoall schemes, the performances are almost equivalent to
each other on the K computer.
Parallel /O for a large system". For an MD simulation of a very
large system, single restart/trajectory files cause several prob-
lems. First, there is a memory problem in reading single restart/
trajectory files. In the case of a 1 billion atom system, we require
a 24 GB (6 [three coordinates and velocities] x 1 billion [number
of particles] x 4 [byte for a real number]) file size for a single
restart file. Consequently, each process needs at least 24 GB
memory to read only the restart file. Because we require not only
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restart but also PDB (protein data bank) and force-field
parameter files, the file size becomes even larger than 100 GB,
which can be prohibitively large. Writing a single restart/trajectory
is even more problematic for a very large system. To write a single
trajectory file, we need to accumulate 12 GB size coordinates by
communication among processes. Parallel I/O is designed to avoid
these problems. With parallel I/O, each process requires data of
the corresponding subdomain. As we increase the number of pro-
cesses, the required amount of data in each process decreases
accordingly. A parallel restart file is generated from the initial PDB
and parameter files using a parallel restart setup tool (prst_setup).
During MD simulations, each MPI process writes trajectory files
that contain only the coordinates of the corresponding sub-
domain. The number of files is identical to the number of MPI pro-
cesses. After finishing the MD simulation, users can combine the
trajectory files into a single file with atom selection option in order
to only analyze the atoms/atom groups of interest.

Optimization of GENESIS for KNL Intel Xeon phi processors

Hardware architecture of KNL in trinity phase 2 and Oakforest-
PACS. As the feature width of commodity chips approaches
10 nm, power consumption has increased substantially due
to leakage currents. Many-core chips with fewer components per
core and lower clock speeds therefore are being developed for
future exascale computing. The 1.4 GHz Intel Knights Landing
(KNL) 7250 chip in Trinity Phase 2 and Oakforest-PACS has
34 active tiles, each of which has two cores that share a single
1 MB L2 cache. Each core supports four-fold simultaneous multi-
threading (SMT); thus, up to 272 hardware threads are available
on a single node. They support AVX512 instructions including
conflict detection, hardware gather/scatter prefetch, and expo-
nential and reciprocal instructions. Each processor comes with
16 GB on-package High Bandwidth Memory (MCDRAM) and has
access to an additional 96 GB memory via DDR4 channels. The
MCDRAM and DDR support 400 GB/s and 90 GB/s streaming,
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respectively; however, the latencies of MCDRAM and DDR access
are comparable. The memory mode of the processor is con-
figurable at boot time; simulations were performed using nodes
booted in the quad cache mode, in which the MCDRAM is con-
figured as L3 cache, and the DDR is configured as usual. In
Oakforest-PACS and Trinity Phase 2, Intel Omni-Path and Cray
Aries interconnect are assigned, respectively.

Data layout. In GENESIS 1.0-1.3 packages, coordinates, velocities,
and forces have an array-of-structures (AoS) type, in terms of
source code organization. In other words, the x, y, and
z components of coordinates, velocities, and forces are con-
tiguous in memory. On KNL, the SIMD performance improves
when making use of a structure-of-arrays (SoA) data type
where x components of coordinates are contiguous in mem-
ory. To increase the SIMD performance, we changed the data
layout from AoS to SoA in the module of real-space non-
bonded interactions.

New algorithm for real-space nonbonded interactions: Reduced
memory neighbor search scheme with improved

performance. For the efficient usage of memory on KNL, we gen-
erate a new neighbor search scheme, which reduces the mem-
ory size significantly. In GENESIS 1.0-1.3 packages, we make use
of the neighbor search algorithm based on the midpoint cell
scheme. In this scheme, we first check cell pair indices icel and
jcel for a given cell pair. For each atom indices i in icel, we search
for atom indices j in jcel and write the indices of j as neighbor
lists (Algorithms 1,2). The required memory size for the process
becomes MN? for M cell pairs in a process and N atoms in a cell.
The neighbor search is written every 10 or 20 steps, and the real-
space nonbonded interactions are performed based on this
neighbor list. For a very large system, this might make use of
both MCDRAM and DDR, losing overall performance. Moreover,
the algorithm does not allow contiguous memory access in force
evaluation, preventing high SIMD performance (Fig. 3a).

@) (b) Neighbor list
12345678 123 456 78
A 8

S I
L >

T 4 6 Atom indices in cell icel

[&] Z. 5

=

- X1t |4 .

g X 3 Force calculation

g ¢ K 5 1 23 45678

ps X A

g 1

=

<

Atom indices in cell icel

Figure 3. Nonbonded interaction schemes.
(@) Nonbonded interaction scheme used in
GENESIS 1.0-1.3. (b) New nonbonded interaction
scheme for Intel Xeon Phi processors. [Color
figure can be viewed at wileyonlinelibrary.com]
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To use only MCDRAM in MD simulations with better
performance, we devise a new algorithm of a neighbor search
with reduced memory usage. In the proposed algorithm, for
each atom i in icel, we check if there is at least one atom index
j in jcel to be considered as a neighbor. If there is at least
one neighbor of i, we write neighbor(i.j) = 1 in the neighbor sea-
rch module. In the nonbonded interaction module, we assign
interactions between i in icel with all j indices in jcel if neighbor
(ii)) = 1. For example, let us consider atom index 5 in icel, as
shown in Figure 3. In this case, four atoms (indices 2, 4, 5, and 7)
are considered as the neighbor list. In the new interaction
scheme, we write neighbor(5,i)) = 1 and calculate all interactions
between 5-th atom in icel and all atoms in jcel in the nonbonded
interaction module. In this neighbor search scheme, the required
memory size becomes MN, so we can reduce the memory usage.
This neighbor search scheme and the nonbonded interaction
algorithm with SoA data are written in Algorithm 3. With our
new neighbor search scheme, contiguous memory access is
available, optimizing the overall performance (Fig. 3b). Therefore,
the new neighbor search scheme not only decreases the overall
memory usage, but also results in better performance. In addi-
tion, this reduces the computational time of neighbor list writing
because we are not required to check all particle pairs.

Optimization of FFT with proper choice of the FFT
decomposition scheme. In our previous development of the
parallelization scheme, the FFT is performed on the K computer
with 6D mesh/torus interconnect network. On the K computer,
1d_Alltoall and 2d_Alltoall schemes works almost equivalently by
properly assigning the decomposition topology for the 1024°
PME grid. However, we could not guarantee the same parallel
efficiency on the KNL machine. Therefore, one needs to investi-
gate the parallel performance of the two developed schemes
and make a choice of suitable FFT scheme for the target hard-
ware and the target system.

Results and Discussion
Performance results of GENESIS on KNL

Although there are 68 cores per node, we assign 64 cores per
node for easier selection of MPI processes. In each core, four
threads are available. We considered 256 threads per node for
our benchmark test. In our hybrid (MPI+ OpenMP) para-
llelization, we assigned eight OpenMP threads, so the number
of MPI ranks in a node is fixed to 32. Benchmark systems are
created by placing multiple STMV (Satellite tobacco mosaic
virus) systems in a single box, and also by preparing the GATA4
gene locus system. We used the CHARMM force field with mod-
ified TIP3P explicit water model.?®?%' We used 12.0 A cutoff
thresholds, whereas van der Waals interactions were smoothed
to zero from 10.0 A to 12.0 A using switch functions. We used
the time step of 2fs and neighbor list search and particle
migrations were considered every 10 steps. Bonds related to
hydrogen atoms were constrained by SHAKE/RATTLE algo-
rithms.*®3" The SETTLE constraint algorithm was used for the
water.2? On Oakforest-PACS, we investigated the parallel effi-
ciency of our FFT scheme, and the effect of the new algorithms
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of the real-space nonbonded interactions from a 92,224 atom
system (apolipoprotein A-l (ApoA1), a component of high-density
lipoprotein). We also performed benchmarks using 1024° and
2048° PME grids for a 230 million and 1 billion atom model sys-
tem. On Trinity Phase 2, we used a 2048% grid for the GATA4
gene locus (1 billion atom system), but a smaller time step of
1 fs. In all cases, we used the Intel Fortran Compiler 17.0.

FFT communication time on Oakforest-PACS. To study the per-
formance of GENESIS on KNL, we investigated the communica-
tion costs using the volumetric decomposition FFT schemes.
Our target PME grid numbers here are 1024° and 20483 In MD
simulations, these grid numbers are usually used for a system
consisting of 100 million to one billion atoms. FFT timing statis-
tics are obtained by running MD simulations: the communica-
tion time includes time of waiting before communication
and all MPI_Alltoall communications. Because the PME grid
number in the x dimension is not divisible by the number of pro-
cesses (if the input grid number in the x dimension is n, the grid
number in the x dimension becomes J +1 after the FFT by con-
sidering real-to-complex FFTs), each process has a different
communication time. In Figure 4, we depict the timing statistics
of total FFT execution and communications in FFT by choosing
the time of the most time-consuming process. As mentioned
in the previous section, we assigned eight OpenMP threads, so
the total number of threads used is obtained by multiplying
eight by the number of MPI processes. In the first step, the wait
time could be large due to different starting setup times, so we
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Figure 4. FFT time of a) 1024> and b) 2048° PME grids using GENESIS on
Oakforest-PACS. [Color figure can be viewed at wileyonlinelibrary.com]
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measured the communicational time from 1001 to 2000 MD
steps. This includes timing statistics of 1000 forward and back-
ward FFTs. For both 1024% and 2048 PME grids, 2d_Alltoall
scheme is better than 1d_Alltoall, if the number of processes is
not sufficiently large. On the other hand, 1d_Alltoall becomes
better than 2d_Alltoall for larger number of processes. There-
fore, more frequent communication with small number of pro-
cesses involved in the communication is preferred, if we want
to make use of large number of KNL processors. For the MD
simulation of 1 billion atom size system with 2048*> PME grid
sizes using more than 32,768 MPI processes, 1d_Alltoall scheme
is a better choice. This is different from the performance results
of the K computer on which performances of 1d_Alltoall and
2d_Alltoall are almost equivalent to each other even using very
large number of MPI processes. The main difference between
two tests on KNL and K is the number of MPI processor in a
node: we used one MPI per node in the case of K whereas on
KNL, 32 MPIs were assigned per node. We compared the FFT
performance between our 1d_Alltoall and MKL FFT library used
in GROMACS MD package version 2016.1,""% which makes use
of the pencil decomposition FFT. Using MKL FFT, we observe
that the lowest communication time of FFT for 2048° grids is
34.22ms, which is slightly higher than 1d_Alltoall scheme
(27.70 ms). From this comparison, we expect that 1d_Alltoall
could be the most suitable FFT parallelization scheme for a
very large system on a large number of KNL processors.

Effect of new nonbonded interaction scheme with reduced

memory. To understand the effect of the new neighbor search
scheme with SoA data, we performed four MD simulations of
ApoA1 (92,224 atoms) system on Oakforest-PACS: Algorithms
1,2 with and without AoS data and Algorithms 3,4 with and
without SoA data. For one node, we assigned 32 MPIs with
8 OpenMP threads. The CPU time for the real-space nonbonded
interactions and neighbor search generations are obtained from
the profile of 0-th thread of the MPI rank 0 by using VTune
Amplifier. In Table 1, we show the memory usage for the neigh-
bor search and the total number of pairwise interactions in real-
space nonbonded interactions. In Table 2, we describe the
timing statistics of neighbor search generation and real-space
nonboned interactions for 2000 MD steps. Here, we assigned the
neighbor search list generation every ten steps. Our new algo-
rithm (Algorithm 3 with SoA) has 1.5x better performance than
that used in GENESIS 1.0-1.3 (Algorithm 1 with AoS) although the
number of interactions is 2.5 times larger and just one sixth of
the memory is used for neighbor search. The higher speed of
Algorithm 3 in the neighbor list is due to less computational

Table 1. Memory usage (GiB) for the neighbor search and number of
pairwise interactions evaluated in real-space nonbonded interactions
(32 MPI with 8 OpenMP case).

Memory usage Number of interactions

Algorithm 1 (AoS) 305.88 MiB 47,364,470
Algorithm 1 (SoA) 305.88 MiB 47,364,470
Algorithm 3 (AoS) 48.40 MiB 122,404,436
Algorithm 3 (SoA) 48.40 MiB 122,404,436
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Table 2. Calculation time (sec) of neighbor search + real-space
nonbonded interaction for 2000 MD steps.

Neighbor list Nonbond Total
Algorithm 1 (AoS) 9.95 36.42 46.37
Algorithm 1 (SoA) 6.60 33.71 40.31
Algorithm 3 (AoS) 491 102.46 107.37
Algorithm 3 (SoA) 415 27.86 32.01

cost. With Algorithm 1, we need to check all particle pairs. On
the other hand, we can skip such a checking procedure fre-
quently. The better performance of the real-space nonbonded
interactions is mainly due to less L2 HW prefetcher allocations.
With Algorithm 3 with SoA, the L2 HW prefetcher allocations are
around 4.2 x 10”. With Algorithm 1, this becomes 1.5 times
larger. The large HW prefetch problem is highly related to the
indirect memory access. With Algorithm 1, the index of the most
inner loop is k, but we evaluate all interactions using index j by
converting from the index k to j using neighbor _list. This indirect
memory access becomes the main problem for performance
improvement and can be reduced with Algorithm 3. We found
that Algorithm 1 can be accelerated by adopting SoA data, but still
shows less performance than Algorithm 3 because of the indirect
memory access. Algorithm 3 with AoS data is four times slower
than the same algorithm with SoA, showing the importance of
SoA data for performance. We also tested these algorithms on
other CPU architecture: Intel's Sandy bridge, Ivy bridge, Haswell,
Broadwell, and Skylake micro-architectures, and SPARC64 VIlifx
on the K computer. For Haswell, Broadwell, and Skylake, Algo-
rithm 3 works better than Algorithm 1. On the other hand,
Algorithm 1 is better than Algorithm 3 for other processors.
Even on Haswell, Broadwell, and Skylake, Algorithm 1 works
better if we do not use INTEL compilers.

Benchmark of 230M and 1B system on Oakforest-

PACS. Benchmarks of 230 million and 1 billion atoms (230M and
1B system) were performed by creating a system of 6 X 6 X 6
and 10 x 10 x 10 copies of STMV, respectively. As mentioned in
results and discussion Section 1 A-B, we applied 1024° and 2048°
PME grids, corresponding to 1.2 A and 1.1 A PME grid spacings.
We used velocity Verlet integrator with NVE ensemble, where the
reciprocal-space calculation with FFT is performed every step. As
shown in Figure 5, GENESIS shows good scalability even though
we calculate reciprocal-space calculation every time step. The
most time-consuming process is the evaluation of the real-space
interaction for small numbers of processes. As we increase the
number of MPI processes, the main bottleneck moves from the
real-space to reciprocal space interactions because there is no
communication in the real-space interaction, while reciprocal-
space interaction includes MPI_Alltoall communications in FFT.
For example, in the case of 230M system using 2048 MPI ranks,
the CPU time of real-space interaction is twice as large as the CPU
time of reciprocal-space interaction. If we increase the number of
MPI processes, the ratio of the CPU time becomes opposite: the
CPU time for reciprocal-space interaction becomes twice larger
than the real-space interaction. Due to our efficient FFT para-
llelization, we could reduce the CPU time of both real- and
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Figure 5. a) Benchmark performance of 230M and 1B system on Oakforest-PACS. b) Strong scaling of GENESIS on LANL Trinity Phase 2 KNL platform: speed-

up as a function of number of cores.

reciprocal-space nonbonded interactions and obtain the scaling
as shown in Figure 5. For the 1 billion atom system, the perfor-
mance reported by us is 1 ns/day using 65,000 MPIs, which corre-
sponds to 130,000 processor cores or 2048 nodes. We compare
the performance of GENESIS with other MD software (NAMD!2®!
and GROMACS™) for large-scale MD simulations. We found that
GROMACS shows very good performance on real-space non-
bonded interactions; however, the code was not applicable for
large systems consisting of more than 100 million atoms. To com-
pare the performance of GENESIS with previously published
NAMD benchmark performance results,we estimate approximately
1.5 ns/day when considering the system size and platform archi-
tecture. Direct comparison is also complicated by different simula-
tion conditions between NAMD’s and GENESIS’ benchmarks. For
example, NAMD assigned FFT grid spacing 2 A while it is 1.1 A in

our case. Therefore, we used almost (%)3~6 times larger FFT
grid sizes than NAMD'’s benchmark case. In addition, NAMD per-
formed reciprocal-space nonbonded calculation with FFT every
three steps whereas we performed it every time step.

MD simulation of the GATA4 system on Trinity phase 2. On

Trinity phase 2, we performed approximately 1 ns MD simula-
tions of the gene locus with 1 fs time step. Parallel restart files
are generated by “prst_setup” tool in GENESIS to reduce the file
size required in each MPI rank. Here, we assigned 65,536 MPIs,
so the number of files is also 65,536. The system size is
1907 x 2252 x 2485 A3, and it is subdivided by 32 x 32 x 64
subdomains according to the number of MPIs. Table 3 shows
the timing statistics of each evaluation used in MD. Here, time
for integration includes the time of integration of coordinates

Table 3. Calculation time (s) of each component for 50 ps MD simulation
of gene locus (time step is 1 fs).

Total time (s) Ratio (%)
Total 9936.63 100.00
Integration 520.03 13.68
Bonded 13.68 0.14
Nonbonded (real) 2272.25 22.87
Nonbonded (reciprocal) 5493.88 55.29

J. Comput. Chem. 2019, , +«

and velocities and that of communication of coordinates and
forces. Bonded interactions consist of energy/force evaluation of
bonds, angles, and dihedral angles. As shown in the table, the eval-
uation of nonbonded interactions takes around 80% of the overall
simulation time. For nonbonded interactions, the evaluation of the
reciprocal-space interaction takes more than twice of the real-
space interaction, and it covers more than 50% of the simulation
time. Communication times of forces and coordinates among sub-
domains are almost negligible. This observation suggests that the
main problem of MD simulations of large systems on a large num-
ber of processors is the evaluation of the FFT included in the
reciprocal-space interaction. We believe that our parallelization
scheme of FFT is most suitable for large-scale MD simulations on a
large number of processors, considering the scalability of our FFT.

Implications for chromatin biophysics: Electrostatics of the
crowded environment inside compacted chromatin

We performed the first billion atom biomolecular MD simula-
tion of a gene locus in explicit solvent. The achievement is
notable considering the necessity of including long-range
forces, as well as the large memory footprint typically associ-
ated with biomolecular complexes, in contrast to large MD sim-
ulations in materials science, which typically neglect long-range
forces. Importantly, the study is not only the first simulation of
an entire gene locus, but also the first simulation of a gene to
examine DNA sequence level. One of the motivations to simu-
late large-scale systems on the atomic level is electrostatics—it
plays an important role in many biological systems, including
DNA, RNA, ion channels, and chromatin complexes. Typically, elec-
trostatic potentials are computed using the Poisson-Boltzmann
method.®® While this method is excellent at characterizing the
general features of the overall complex, many important aspects of
electrostatic effects occur on short length scales, within the Debye
length. In the future, once the technical obstacles of running
biologically relevant (microsecond in the case of chromatin
dynamics) time-scales are overcome, large-scale massively par-
allel explicit solvent simulations of this kind will allow us to
more accurately simulate nucleosome-nucleosome interactions
and nucleosome interactions with linker DNA, where charges
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are not fully screened by the ionic environment. In these regimes,
the finite size and discrete nature of charged side chains, nucleic
acid phosphates, and ions themselves make important contribu-
tions, which are not described by the Poisson-Boltzmann approxi-
mation.®* Nevertheless, our benchmark simulations provide, for the
first time, an example of a nanosecond time-scale dynamics of an
entire gene consistent with a realistic force field potential and based
on experimental data—an important first step in the direction of
simulating a complete biological system over long times on an
atomistic level. Rapid improvements in both hardware and software
needed to achieve this goal are inevitable in the foreseeable future.

Conclusions

Fully atomistic simulations based on coarse-grained models play
a vital role for the understanding of chromatin structure. It is the
properties of the structure on the atomic scale, such as how the
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DNA wraps around histone proteins to form nucleosomes and
how the multiple nucleosomes wrap into a 30 nm fiber that ulti-
mately dictate the megabase-scale hierarchy of chromatin. It is
also known that electrostatic interactions between dissolved ions
and the fibers strongly affect folding dynamics, a process which
can only be modeled on an atomistic level. Such studies enable
the examination of histone tail dynamics, histone-histone and
nucleosome-nucleosome interactions in crowded environments,
all of which are important unsolved issues in chromatin dynam-
ics and chromatin compaction, key processes in cell division,
development, cancer and neuropsychiatric disorders. Improved
calculations of the electrostatic potential will allow us to investi-
gate the mechanism of interaction between histone tails of
nearby nucleosomes, be it ion-mediated, water-mediated, direct
charge-charge or some other as yet unknown mechanism.
Biomolecular simulations are particularly challenging compu-
tationally since they require the inclusion of long-range forces,

Algorithm 1. Neighbor search used for GENESIS 1.0-1.3.

doij=1,M
icel = cell index(1,ij)
jcel = cell index(2,1ij)
doi=1, N(icel)
doj=1, N(jcel)

rij (1) = coord(l,1i,icel) -coord(1l,j,jcel)

( )
rij(2) = coord(2,1i,icel) -coord (2,7, jcel)
rij(3) = coord(3,1i,icel) -coord(3,j,jcel)
dij = sqrt (rij (1)%+rij (1)%+rij(1)3)
if (dij pairlist cutoff) then
Neighbor (i, ij) = Neighbor (i, ij) + 1
k = Neighbor (i, ij)
write Neighbor list(k,1i,ij)
end if
end do
end do

end do

M: number of cell pairs

First cell index of the cell pair

Second cell index of the cell pair
N(icel) : Number of atoms in icel-th cell

Algorithm 2. Real-space nonbonded interaction kernel used for GENESIS 1.0-1.3.

doij=1, M
icel = cell index(1,ij)
jcel = cell index(2,1ij)
doi=1, N(icel)
force temp(1:3) =0.0
dok =1, Neighbor (i, ij)

Number of neighbors of i-th atm in icel-th cell

j = Neighbor list(k,i,ij) Neighbor of i-th atomin icel-th cell

rij (1) = coord(1l,1i,icel) -coord(1l,j,jcel)

rij(2) = coord(2,1i,icel) -coord (2,7, jcel)

rij (3) = coord(3,1i,icel) -coord(3,3j,jcel)
(

dij = sqrt (rij (1) %+rij (1) 3+rij (1)3)

calculate £ (1:3) : force component from given distance

force temp(l) = force temp(1l) - £ (1)
force temp(2) = force temp(2) - £ (2)
force temp(3) = force temp(3) - £ (3)
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force(1l,j,jcel) = force(1l,j,jcel) + £ (1)
force(2,j,jcel) = force(2,j,jcel) + £ (2)
force(3,j,jcel) = force(3,j,jcel) + £ (3)

end do
force(1l,1i,icel) = force(1l,1i,icel) + force temp(1l)
force(2,1i,icel) = force(2,1i,icel) + force temp(2)
force(3,1i,icel) = force(3,1i,icel) + force temp(3)
end do
end do

Journal of
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Algorithm 3. New neighbor search algorithm.

doij=1,M
icel = cell index(1,1ij)
jcel = cell index(2,1ij)

Neighbor (i, ij) =0
doi=1, N(icel)
doj =1, N(jcel)
rij (1) = coord(l,1i,icel) -coord(1l,j,jcel)
rij(2)
rij(3) = coord(3,1i,icel) -coord(3,j,jcel)
dij = sqrt (rij (1) 2+rij (1) 3+rij (1)3)
if (dij pairlist cutoff) then
Neighbor (i, ij) =1

( )
coord(2,1i,icel) -coord(2,]j,jcel)
( )

exit the do loop
end if
end do
end do
end do

Algorithm 4 Real-space nonbonded interaction kernel used for KNL.

doij=1, M

icel = cell index(1,ij)

jcel = cell index(2,ij)

doi=1, N(icel)
if (Neighbor(i,ij) ==0) cycle
force temp(1:3) =0.0doj =1, N (jcel)
rij (1) = coord(i,1,icel) -coord(j,1,jcel)
rij (2) = coord(i,2,icel) -coord(j,2,jcel)
rij (3) = coord(i,3,icel) -coord(j,3,jcel)
calculate £ (1:3) : force component from given distance
force temp(1l) = force temp(1l) - £ (1)
force temp(2) = force temp(2) - £ (2)
force temp(3) = force temp(3) - £ (3)
force(j,1,jcel) = force(j,1,jcel) + £ (1)
force(j,2,jcel) = force(j,2,jcel) + £ (2)
force(j,3,jcel) = force(j,3,jcel) + £ (3)

end do

force(i,1,icel) = force(i,1,icel) + force temp (1)

force(i,2,icel) = force(i,2,icel) + force temp(2)

force(i,3,icel) = force(i,3,1icel) + force temp(3) end do
end do
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which are often neglected in MD calculations in materials sci-
ence. Here, we optimized the most time-consuming real-space
nonbonded interactions by using a simple neighbor scheme with
reduced memory, contiguous memory access, and change of
data type from array of structures (AoS) to structure of arrays
(SoA), particularly useful for the Intel Xeon Phi processor. We
found that the new algorithm accelerates the speed by increas-
ing SIMD performance. Long-range electrostatic interactions with
the FFT were optimized by minimizing the number of processes
involved in communications by volumetric decomposition. Our
developments have been tested for 230 million atom and 1 billion
atom systems with 1024% and 2048% PME grids, showing good
parallel efficiency even when using more than 65,000
MPI processes, giving rise to the first billion atom simulation and
also the first fully atomistic MD simulation of an entire gene.
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APPENDIX A.
Forward FFT with 1d_Alltoall scheme

o WN =

. MPI_Alltoall communication in x dimension (MPI_Alltoallx)
. FFT in x dimension (FFTx)
. MPI_Alltoall communication in x dimension (MPI_Alltoallx)
. MPI_Alltoall communication in y dimension (MPI_Alltoally)
. FFT in y dimension (FFTy)
. MPI_Alltoall communication in y dimension (MPI_Alltoally)
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