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ABSTRACT:Novel RNA motif design is of great practicab- =
importance for technology and medicine. Increasingly, computatiofat=.” e
design plays an important role in sudrts. Our coarse-graineds” I e
RAG (RNA-As-Graphs) frameworlers strategies for enumerating——*

the universe of RNA 2D folds, selectRiyA-liké candidates for

design, and determining sequences that fold onto these candid&te& 1.
RAG, RNA secondary structures are represented as tree of*dtfar "
graphs. Graphs with known RNA structures are ‘eadistihty and
the others are labelduypotheticédl By using simpkd features for
RNA graphs, we have clustered the hypothetical graptiRiNAto .
like’ and “non-RNA-like groups and proposed RNA-like graphs s~ “C&"
candidates for design. Here, we propose a new way of designing graph
features by using Fiedler vectors. The new featuees geaph

shapes better, and they lead to a more clustered organization of existing graphs. Weafttancsggrges in K-means clustering
accuracy by using the new features (e.g., up to 95% and 98% accuracy for tree and dual graphs, respectively). In addition, we pro
a scoring model for top graph candidate selection. This scoring model allows users to set a threshold for candidates, and
incorporates weighing of existing graphs based on their corresponding number of known RNAs. We include a list of top scor:
RNA-like candidates, which we hope will stimulate future novel RNA design.

Clustering of existing and hypa;heﬁcal RNA :
graph§ in{s, e} p[ane helps distinguish °
“RNA-like” from;‘non R.N»'Q-Iiké”,'g!h ph’s
S legnte Fiedler vectors are used
to define reduced
variables {s, e}

04a 04 7
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INTRODUCTION 1600

Aside from RNAs that act as templates for translation into 1400

proteins, microRNAs, silencing RNAs, ribozymes, and

riboswitches have central roles in catalysis, gene regulation,

and gene editing activittésThe 3D structures of these

noncoding RNAs are essential for completing their tasks. Since

the rst RNA structure published in 18@Bpusands of RNA

structures have been determined by X-ray crystallography, € s

NMR spectroscopy, cryo-EM, and other experimental = 400

techniqueskigure ldisplays the number of RNA structures

available in Protein Data Bank (PDB) from 1978 to 2019 200

(https://www.rcsb.org/stats/growth/growth-xna oL , ~cnennm=EnnENEnEEEERERER
The fast growing RNA databases suggest that our known 1980 1985 1950 1995 2000 2005 2010 2015 2020

structural repertoire is just the tip of the iceberg of the RNA

universe. Discovering and designing new RNA folds hafiure 1.Number of RNA structures available in PDB.

important implications to technology and medicine. Indeed,

RNA nanotechnology is an emergielg for RNA-targeting

therapeutics. RNAs like aptamers, silencing RNAs, ribozymes

and riboswitches can be applied for medical diagnosis, targetedeived: November 28, 2020

drug delivery, and gene silencing and regulation, with possiBlgvised: January 6, 2021

reduced side ects and immune responses compared withPublished: January 20, 2021

antibody- and small-molecule-based therapeutRiNA-

based vaccines have now become a realitghtothe

COVID-19 pandemic, with two mRNA-based vaccines by
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P zer/BioNTech and Moderna with >90%cacy entering In our RAG approach, we represent RNA 2D structures as
the clinic at warp speed. tree or dual graphs: for tree graphs, loops (hairpins, bulges,
The building blocks of these RNA therapeutics often requitigternal loops, junctions, dangling ends) are represented as
prediction and design of RNA secondary and tertiaryertices, and stems are edges. For dual graphs, we reverse this
structure$. Secondary structures of RNAs refer to thede nition so that vertices represent stems, and edges denote
hydrogen bonding networks that form as the single-strand&?psz- Dual graphs represent pseudoknots explicitly, while
RNA molecule folds upon itself to form double-strandedf®€ graphs are more intuitive.
regions (stems), imperfect with loops. Tertiary structureg F19ure 2 illustrates the tree and dual graphs of an IRES
involve the folding in space of these networks. While mal A (PDB code 2NC1). This coarse-grained representation

. - a 2D strcture sigmantly reduces the dimension of the
programs like ViennaRNAMFOLD, PKNOTS? NU- ;
PACK? and INFO-RNA? can eectively predict and design conformational space compared to the sequence space and

allows us to enumerate all possible nonisomorphic graph

RNA secondary structures with or without pseudoknots (9 ng|agies for a given number of vertices using graph theory

intertwined hydrogen-bonded segments), accurate and cQilymeratiod>2° Another advantage of graph representation is
sistent RNA tertiary structure prediction remains a chaltg insensitivity to small variations in base pafiipge B
lenge’" *°The large number of degrees of freedom in buildinghows two possible 2D structures of the 3_6 pseudoknot of the
RNA 3D atomic models is a key dlilty, and thus coarse- SARS-CoV-2 frameshifting element (ESE) Although the
grained approaches like our RNA-As-Graphs (RAG) framewo structures have drent stem and loop sizes (see
work developed since 280grovide viable alternatives. (See associated circular diagrams), their overall topologies are the
refs17 and 18 for recent reviews of simplil approaches to same: both have the dual graph 3_6 representation. When
RNA modeling.) studying RNAs whose functions rely on their 2D structures,

Graphs have been used to describe RNA seconda$yich as this FSE pseudoknot, focusing on the overall topology
structures since the 1980$? Ruth Nussinov, to whom helps us better distinguish among and classify RNA
this article is dedicated, made many pioneering contributiofgnformations. See our work on this RNA using graph theory
to RNA representations and structure analysis, includig 9€ ne drug target residues, interpret COVID-19 related
proposing the usage of circular plots to represent RN ameshifting mechanisms, %nd the relevance of several graphs
pseudoknots (sddgure B) 2 to the conformational space’ .

We label those graphs that have corresponding known RNA

structures @&xistingg and the others dhypothetical Each

(a) . ..'3 L graph has a unique idengition number. Using solved RNA
’-3-::.‘. § ":::,:_ .-.:'-' structures in PDB, we have found 80 existing tree graphs out of
"‘-'.";- :.::} the total 2287 tree graphs that havé3vertices, and 121
..:}‘ f-".' ° existing dual graphs out of the total 110 667 dual graphs that
& o have 29 vertices"
& 438 We have further applied graph theory to select features for
% e the graph topologies to classify hypothetical graptiRithe
3,/z< = like' and “non-RNA-like motifs>* Thus, an RNA-like motif
52 2 & e resembles existing topologies, so it would be more likely to
3D structure of 2NC1 @ resentation  Dual representation exist in nature. Such candidates can then be designed by
- « “inverse foldirig(produce sequences that fold onto the target
(b) szGG{J""’ . motif) by our computational pipelitieln our pipeline, we

rst partition the target tree graph into subgraphs using our
partitioning algorithii and extract corresponding atomic
fragments from our RAG-3D dataiaSecond, we assemble
these atomic fragments using our F-RAG*ddlird, the
assembled sequences are screéergticoby 2D structure
prediction programs like RNAfold and NUPACK to determine
whether this inverse folding (IF) is successful. Fourth, we
mutate sequences that do not fold onto the target tree graph by
our genetic algorithm RAGFuntil we obtain successful
designs. Experimental testing of two designed sequences using
MW SHAPE-MaP has shown promisé:’
FSE structure 1 ESE structure 2 n t_hi_s paper, we improve our graph clust_ering_ approach for
identifying novel design candidates by using Fiedler vectors,
along with a new scoring model. Prior features were derived
Figure 2.(a) Tree and dual graph representation of the 2D StrUCtUrQrom the Lap'acian spectra of the graphs using linear or
of an IRES RNA (PDB code 2NC1). In its 3D structure, stems argaqratic variables, and both unsupervised clustering algorithm
colored red and loops are gray. With loops (gray) labeled as verti Sneans and supervised cleatibn k-nearest-neighbors (k-

and with stems (red) labeled as edges, its 2D structure can )
represented as RAG tree graph 5_2. With stems labeled as verti were used to classify the graph topolabﬂgsuse of our

and loops as edges, the 2D structure can be represented as RAG Y features, the accuracy of K-means clusteringasitiyni

graph 4_16. (b) Two possible 2D structures of a pseudoknot of thicreases from 77.22% to 95% for tree graphs (linear variables)
SARS-CoV-2 frameshifting element, with associated circular diagra@s] from 75.42% to 98% for dual graphs; for quadratic
and their common dual graph representation 3_6. variables, notable improvements also teslite 10-fold

S1

S3
Dual graph 3_6
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cross validation accuracy of k-NN cleastsdbn using the new
features increases to 88% for tree graphs (from 8%

using full linear variables) but decreases slightly fr@h%6
using full quadratic variables; for dual graphs, we improve the
accuracy to 7378% compared to full linear variables (63
69%) and it decreased slightly from884% for full quadratic
variabled! In addition to notable increased classion
accuracy compared to linear variables, the new features allow
us to incorporate graphs with two vertices and their large
associated pool of known RNA structures as fragments in our
clustering work.

An added advantage of the Fiedler vector scoring model is
the introduction of a threshold value for novel motif
candidates. In contrast, K-means clustering ofteneslassi
more than 50% of the total graphs as RNA-like, and thus it is
di cult to identify top candidates for novel RNA design. Our
scoring model also incorporates weighing of existing graph
topologies based on their corresponding number of known
RNAs, so it eactively uses existing RNA data. With these new
features and scoring model, we can thus propose stronger and
more targeted candidates for design of novel RNA motifs.

AnOther mteresnng appl.'catlon of .the Fiedler Vec.tor ScorlnIglgure 3.Analysis of three tree graphs 7_1, 7_2, and 7_4. For each
model is to nd motifs similar to a given graph. This can be

. . . . tree graph, the vertices are numbered from 1 to 7, and the
useful for discovering or creating an alternative fold of an RN rresponding Fiedler valyés shown. The corresponding Laplacian

In our recent paper, we applied RAG-IF tomeeninimal matrixL and the Fiedler vectos are shown at center. At right, the
mutations that transform the SARS-CoV-2 FSE pseudokngiedier vector components are mapped onto their corresponding

into other graph motifs to identify target residues for antiviralertices, i.e.y; for vertex, and the dierent modules that make up
drug and gene editing strategiés.this process, determining the graph are colored.
related graph motifs can be challenging, especially when facing
a large pool of candidates. However, our scoring model can
analyze the graph motifs tomke a ranked list of candidates.
Our mutation resuft$ align well with our scoring model
ranking: highly ranked candidates require fewer mutations.
In the next section{ethod}, we present the new Fiedler

vector scoring model followed by its motivation and a simple
illustration. TheResultssection compares the clustering for
new versus prior features, assesses the scoring model
performance, and tests the predictive power of the Fiedler
vector scoring model. In the last section, we summarize our

ndings, discuss applications of our model, and suggest future
improvement areas.

METHODS

Basic De nitions. Both tree and dual graphs can be
described by their adjacency matrices-(gae= JandFigure
4 for examples). A tree graph witkertices has amx n
adjacency matri&, with entriesg; = 1 if there is an edge
between vertéxandj andg; = 0 otherwise. For dual graphs,
self-loops are allowed, and there can be multiple edges
connecting two vertices. Hence, the adjacency Aé&ria

dual graph has entrgsequal to the number of edges betweengigyre 4 Analysis of three dual graphs 3_6, 4_14, and 4_10. For each
vertex andj, andg; = 2 if there is a self-loop on veitekhe dual graph, the vertices are numbered, and the corresponding Fiedler
degree matri® of a graph is an x n diagonal matrix, with  value , is shown. The corresponding Laplacian matand the
diagonal entried; equal to the number of edges incident on Fiedler vector , are shown at center. At right, the Fiedler vector
vertex. The Laplacian matrixliss D A. By construction, components are mapped onto their corresponding verticggfare.,
the Laplacian matrix is positive semitke with ; = 0 as its vertex.
smallest eigenvalue and associated eigenyestét,1, ...,
1)". Because our graphs are connected, the second smaligaph has a larger Fiedler value (a simple explanation is
eigenvalue df, theFiedler value, is positive. provided inAppendix C in Supporting Informajiofiree

The Fiedler value describes the algebraic connectivity ofgeaphs are simple graphs, and more compact tree graphs
graph, and its corresponding eigenvector is calleteder  correspond to more branched RNAs or RNAs with more
vectar When two simple graphs (no self-loops or multiplgunctionsFigure 3llustrates three tree graphs with increasing
edges between two vertices) are compared, the more compaampactness.
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Because the Laplacians symmetric, its eigenvectors are (2) Suppose existing graiphas features,(g) and graph

orthogonal. Hence, the Fiedler vecjas orthogonal to; = has §, g), then the score that graphieceives from
(1,1, ..., 1% i.e., its components sum up to 0. In spectral existing graphis

partitioning, Fiedler vectors are utilized to identify graph cuts _ -

that optimize dierent condition& For tree graphs, we have 3. = E9&xi@S (rd/ 3] @)

used Fiedler vectors to partition RRAs.
Fiedler Vector Scoring Model. Though the Fiedler value Wherer is a parameter; = ([(§°+ €), and ¢; =

, measures a grahompactness, using it alone is icigunt &Z <3 92 (S )@

to distinguish among graphs. Our previous approach derivi ((l ! '

features from the Laplacian spectrad<=, 5 .. (3) Sum up the scores that grgpteceives from all the

for all graphs with 3 vertices, as follows (implementation existing graphs, i.e.,

details inAppendix A**

M
Prior Features 37 =1 3 (3)
1) Perform linear regression for eigenvalue pointg),(1, . .
@) @2, 2 .nh 1 f) to obtain slogel andy-iﬁtercz)p(t (4) Normalize the scores to be in the range from 0 to 100 by
;- Scale ; asn ; to be independent of ;(;2

(2) Perform linear OR quadratic regression for squared ) _
eigenvalue points (12, 2, ), .. i 1, ) to Note that the scoring model works for any pair of features
obtain scaled slope, andy-intercept ,. Alternatively,  {fi, f2}. Here this pair is&. _ ,
we derive coecients, b, ¢ for the polynomiaX + bx Feature Selection Motivation. If we examine the Fiedler
+ cby quadratic regression. vectors for dierent tree graphs, we observe a one-to-one

(3) Together, we calh[ n ] full linear variables correspondence between the Fiedler vector components and
ang we c'aII i al,'bl’q fuzli quadratic variables. To the tree graph vertices. For a tree graphnwiétices, each
ensure the vé'rialt’)les ’contribute equally, we nc.>rmalizeé(‘:-Jem-/eCtor hascomponents. If we assume the Fiedler value
them to obtain same mean valugs as ' > is simple, then the normalized Fiedler vegisrunique up

o i a to a sign change. Once the vertices of the graph are numbered,

(4) Use principal component analysis (PCA) to select two , js xed so that we can associate each vector compgnent
features from the full linear/quadratic variables, and caffith vertex.
the features reduced linear/quadratic variables To describe the correspondence between Fiedler vector

This feature selection is heuristic. To develop features the@mponents and graph vertices, ve¢ dene two basic
better reect the graph topologies, we are motivated by th&odules that make up tree graphs fsgere }. A linear
observation of corresponde between Fiedler vector module is composedmifvertices that are connected in a line
components and graph structure (see next section). Thizym 1edgesrt 3). Inthis line, the two end vertices have
leads us to the following déion of featuresande degree 1 and the others have degree kwdy branched
module is &way junction represented by RAG tree graph. Its
k branch vertices are adjacent to the center vertex, making its
, . degreé. Any two modules can be combined by overlapping a
@ Calc:;iltift?heengn?ggiz:nd nlfl;et"di!(er Vecor ( 21 22 common edge. Because we seek to divide a tree graph into

2 ) P ] ) distinct topologies, there is no combination of a linear module
(2) Sort the Fiedler vector componentgH.; in ascending  ith another linear one.

order and denote the ordered compones}ts,{ In the last column ofigure 3 we label the component
(3) Scale each to be modules of sample tree graphs and indicate corresponding
Fielder vector components. We see that within linear modules,

New Features ande

V= u( n§ 1) the Fiedler vector components increase in value. Within 3-way
v, S v branched modules, the two free end branch vertices have same
Fielder vector component values. Moreover, if the free end
(4) Perform linear regression on the pointsaf1(2, v), branch vertices precede the center vertex, their Fiedler vector
.., 0, v) to obtain slopsand mean squared ereor components are smaller than that of the center vertex;

Using new features {d’, we score tree and dual graphs otherwise, they are Iarger. In_this way, the Fiedler vector
separately with additional weighing information for existingPmponents increase monotonically from one end of the tree
graphs_ FoM existing graphs amd total graphsy we order graph to the other. ME_lthemaucal eXplananonS for these
existingraphs as 1i M and all graphsas 1j N. Each  observations are Appendices B and C

existing graphhas a weight;, which is the number of known  Although dual graphs magntain pseudoknots that

RNAs corresponding to this graph topology. Then we scog@mplicate the topology, similar observations &pplye 4
the graphs as follows; see below for motivation. shows three dual graphs with their Fiedler vectors. Dual graph

4 14 is an analogue of a linear module, and again its Fiedler
vector components monotonically increase. Dual 4_10
contains a 3-way junction, with vertices 1 and 2 representing
the two free end helical arms. These two vertices are analogous

Scoring Model
(1) For existing graphwith weightw, its initial score is

ES= | + to the free end branches in tree graph 3-way branched module,
$= log(w 1) : .
so again, they have the same Fiedler vector component value,
where and are adjustable parameters. and it is smaller than that of the following center vertex 3. Dual
1147 https://dx.doi.org/10.1021/acs.jpcb.0c10685
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n

graph nz?:@ % (associated with the SARS-CoV-2 frameshifting 12 no 12 i

elemert™) is a 3-stem pseudoknot, where stems 1 and 2 are = & Y e 17 U " =

intertwined and stem 3 is a hairpin. Vertices 1 and 2 are (nSHr(n+1) ., N+ d) L %Sy

connected to other vertices in the same way, just like the freecause v = 0 and

end branch vertices. As expected, they have the same Fiedler v, .V

vector component values. n_§_1 -3
Thus, the way vertices are arranged in graphsdgetkin WSV VS

the Fle_dl_er vector components BecaL_Jse adjacent vertices the Y terms are of scalel and the summation is

have similar,; values and the values increase monotonically ~ vy

from one end of the graph to the other, the distribution of the " i

(]
ordered componenismay capture graph topology. To make w3\ n(rr 1)
the distribution independentrpfwe scale, v;toben 1, i=1
i.e., Hence, our scaling makes the sapdependent of the vertex
w(n$ 1) numbem. o _ .
f= ——— Scoring Model Motivation. With any dened pair of
WS\ featuresf, f,}, we can represent a graph as a pgirt) in

Figure Slots points {i, )}, for four sample tree graphs. For the plane. Good features should capture key information about

simple linear-moduled tree graphs like 7_1, the poimjs (  the grapls arrangement, so we expect RNA-like topologies to
be clustered together, and the closer a graph is to an existing

one, the more likely it is tad corresponding RNA structures.
We incorporate existing graphs and their weights (humber of
known RNASs) to build the scoring model, where the score
assigned to a graph represents the likelihoodliofy RNAs
of this topology. The basic idea of our scoring model is to treat
every existing graph like a hotspot radiating heat. The radiation
decreases exponentially with distance. An existing graph with
larger weight exhibits more radiation. To model more distant
graphs with respect to an origin with larger radiation ranges
and to reect absorption of energy from more neighbors, we
score graphs by the total amount of heat they receive.
This visual helps explain thst two steps of our scoring

model:
(1) The initial score assigned to existing gréph
E$=log(y+

where the weightv is the number of known RNAs

Figure 5.Plots of scaled ordered Fiedler vector padint} ¢f four corresponding fo this graph topology. This is an increasing

tree graphs 7_1,7_5, 7_7, and 7_10. Linear least-squares regressigp§tion of weight. Using a largeconsiders graphs with
are drawn as red lines, and the sispes mean sugared erresse higher weights to be more important, while a srtralits all
calculated. existing graphs equally. Note thet added to have nonzero

scores to graphs of weight 1. Using a ladjminishes the
impact of weights on initial scores.

(2) Each existing graph contributes scores to the graphs

increase in a straight line. lkeway branched modules, the ; X o

free end branch vertices give repegtadilues, and the nearby, and the score that griafeiteives from existing

distributions reect this. For example, the 4-way branched graphi is

module of 7_5 has three repeated valuds=fd&, 6, 7, so S = ESexpS (rgl/ R

branching is at the end. For graph 7_7, the three repeated ~

values for = 3, 4, 5 indicate branching in the middle. The d; value is the distance between the two graphs, so this
We use linear least-squares regression to describe the pstiire exponentially decays as distance increases. The

distributions and look at slopesnd mean squared errars  parameter controls the scoee decay rate, with larger

For linear modules like graph 7_1, the pointhe linear meaning more rapid decay. Bheerm is the distance of

regression well, so slopese close to 1 and errerare very  existing graph from the origin (0,0); including this term

small. Fok-way branched modules, repestedlues make allows us to use existing graphs toeince a range of graphs.

the points deviate from the linegrand error® are larger. Simple lllustration. To illustrate, we show how two

The locations of these repeated values alsenges ande existing tree graphs 2_1 and 7_2 contribute scores to points in

Having the values in the middle like graph 7_7 decseases the plane ifrigure 6 We use our newly derived feataeesl

e compared to branching at the end like graph 7_5. The Since we have many existing graphs with weights 1, we set

situation is similar for dual graphs. Thus, we let thesgloppe = 1 not large. We choose= 5 to let the weights have a

the mean squared ermbe features for our graphs, and this moderate impact on the initial scores. On the basis of trials, we

feature selection works for all graphsmwiti?. setr = 1.5. For points in the plane, we sum the scores they
The slopescan be calculated explicitly (derivation providedreceive from 2_1 and 7_2 usausp land2. Then we draw a

in Appendix lled contour plot using the scores, i.e., yellow to white for
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distance from the originX¥s= 1; graph 7_2 has= 1.13 ane

= 1.85, so, = 2.17. Because 7_2 is further away from the

origin, it has a larg&adiation rangewhich can be seen from

the contour lines being further apart from each other there.
We can also calculate scores for some graphs. For 7_2, its

distance from 2_1 &= 1.86, so the score 7_2 receives from

21Eg)is

§.= 1172eff (18 1.86)/2 0.72

The summed score for 7_2q(3 is § = 205.97. The
maximum score is 206.71, so following normalization, the
score for 7_2 is 99.65. For tree graph 7_1, we obtain score
89.00, and for tree graph 7_4, the score is 86.00. The scores of
these three tree graphs shouldattheir likelihood to exist in
nature.

RESULTS

Figure 6.lllustration of how tree graphs 2_1 and 7_2 contribute C|U5te_ring Comparisons with Prior Features K-Means
scores to points in the plane. The new fesisigsed fox-axis, and ~ ComparisonTo see how well our new featisaadework,

eis used foy-axis. we compare the clustering results using these new features with
those of prior features. Whst apply K-means clustering (see
scores high to low, with 20 contour lines at evenly spaced scdegails inAppendix A)l with reduced linear or quadratic
levels. As expected, the plot looks like a heat map, with twariables for comparison. By mapping feature 1/featxre 2 (
graphs 2_1 and 7_2 at centers of ‘taaispot’ that “radiate axisi-axis) into the plane, we represent graphs as points in the

heat outward. plane. K-means is then applied to cluster the points into two
There are M = 80 existing tree graphs wittBvertices, groups. We label the group with more existing graphs as
and 2_1 is enumerated as th& one with weight, = 826, “RNA-likég, and the other daon-RNA-liké Note that using

and 7_2 is enumerated as the 14th with weight 8. Byeq sandeallows us to add tree graph 2_1 and three dual graphs
1, the initial score of 2_1H§ =11.72, and that of 7_2HS , 2 1,2 2, 2_3 as existing graphs. They were not considered
=7.08. As a result, the neighborhood around 2_1 looks slighthgfore because previous feature derivation required graphs to
hotter than that of 7_2. Graph 2_1 kasl ande= 0, so its have at least 3 vertices.

Figure 7.K-means clustering results for the threzrefit feature selections. Bande featuresx-axis is fos andy-axis is foe For linear/
guadratic variablesaxis is for feature 1 obtained using PCA~ani$ is for feature 2. Distributions for existing graphs are enlarged, with graph
weights (number of known RNA structures) shown to the right of the overall distributions.
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Figure 7shows the K-means plots with a zoom into existingandomly selectinlyl graphs among the hypothetical and
graphs (red). The RNA-like hypothetical points are coloredreate 10 such negative data sets. Baimte we now have
blue, and the non-RNA-like points are black. Compared t9l = 80 for tree graphs amdl = 121 for dual graphs, while
prior features, our neaandeapproach spreads out the graphs using prior features resultdir= 79 for tree graphs aMi=
while still clustering existing motifs. Those existing motifs terid. 8 for dual graphs. To avoid bias from negative data set
to have lovevalues witls values around 1 (bottom center of selection, the same negative data sets used'tm®taken
plots). On the basis of our observationBignire 5 graphs  for the prior features, and we add additional random
with higher-order junctions with branching at the end tend thypothetical graphs for the new features. The average
have largee values. In our database, there are indeed only &curacies of 10-fold cross validations over the 10 negative
few graphs withve or more-way junctiofts. data sets are calculated for new features.

For the existing graphs, weights (from number of known In previous work: we found that using full linear/quadratic
RNA structures) are listed. With the proposed featmds, variables yields higher average accuracies than the reduced
existing graphs with heavy weights are highly concentratedoaies, so we use those accuracies to compare with
the bottom center, and the graphs far from this center mosttprresponding new values usiagdein Table 2 For tree
have weights 1. With our prior reduced linear variables, existing
tree graphs concentrate at the right end of the plot, but sonfeable 2. k-NN Cross Validation Accurdcy
graphs with heavy weights are far from the center, even the
graph with the heaviest weight 580. The observation for du
graphs is similar: existing dual graphs concentrate at the cen
with some heavy-weighted graphs further away. Using redut g
quadratic variables, some heavy-weighted graphs are positioney 47 19 60.51 76.08 7203 63.86 78.81
away from the centroid of existing graphs. 3 66.38 62.78 76.71 74.09 65.59 81.06

We can evaluate the clustering performance by calculatingg 71.56 59.43 78.61 77.81 66.53 80.17
the accuracy, which is ded as the percentage of existing 69.38 60.32 80.32 7740 67.67 7924
graphs correctly clagsl as RNA-like. The more clustered 4 71.56 50.43 80.70 77.40 68.01 78.81
existing graphs usisgndeallow K-means to achieve a higher ; 72.00 58.73 80.32 77.07 68.35 78.94
accuracy. Irrigure 7 graphs at the bottom half plane are 5 71.88 59.62 78.23 78.18 68.35 78.92
classied as RNA-like using our new featgrand ¢ and 7231 50.62 77.47 78.02 69.19 77.50
almost all existing graphs fall in this cluster. The accuracie$; 7556  s095 7639 7789 6831  77.25
using new and prior features are listdchinie 1 By use 0$ 19 7275 5956 7627 7769 6839 7657

3The average 10-fold cross validation accuracy of k-NN afi@ssi
is taken over 10 negative datasets, usirgpneefeatures and prior
full linear/quadratic variables. The average accuracy is sHown for

average accuracy (%)

tree graphs dual graphs

sande linear guad sande linear quad

Table 1. K-Means Accuracy and Predictfbns

tree K-means

1,3, ..., 19
sande linear quad
accuracy (%) 95.00 77.22 73.42 graphs, our new features increase the average accuracy by
RNA-like (%) 78.62 71.87 82.68 about 10%, from60% to 70% for full linear variables, but
non-RNA-like (%) 21.38 28.13 17.32

dual K-means

decrease by about 8% froi#8% for full quadratic variables.
For dual graphs, we observe a similar increase of around 10%

sande linear quad (from 67% to 77%) for full linear variables, but there is no
accuracy (%) 98.35 75.42 72.88 signi cant decrease with full quadratic variables.
RNA-like (%) 71.15 49.93 51.50 Scoring Model Performance.By use of our (untrained)
non-RNA-like (%) 28.85 50.07 48.50 previous clustering methods, many graphs wereedlassi

3 or both tree and dual graphs, the K-means clustering accuracy N.A'“ke’ and it is dlcult. to select Cand'date.s for RNA
the percentages of graphs clesgis RNA-like and non-RNA-like are 0€Sign. Our current scoring model solves this problem by
calculated, using nesvand e features and prior reduced linear/ incorporating the weight information of existing graphs, thus
quadratic variables. producing far leskalse positives® Setting the parameters
1, =5,r=1.5 (seélethodsfor how these parameter values
are chosen) and using our new feataesle we show the
and e the accuracy is as high as 95% for tree graphs amdores for all tree and dual graphsdare 8 where a color
98.35% for dual graphs, compared to 77.22% (linear) afwhr displays how dirent colors represent elient scores. As
73.42% (quadratic) for tree graphs and 75.42% (linear) arekpected, high scores are assigned to graphs at the bottom.
72.88% (quadratic) for dual graphsldble ] we also show Moreover, we separate the score histograms for existing and
the percentages of graphs cledsis RNA-like and non-RNA- hypothetical graphs. The majority of existing graphs have
like. By use afande the RNA-like percentage increases fromscores higher than 70 (65% for tree and 73.6% for dual), while
50% to 71.15% for dual graphs due to the high densities ofly 15.7% of hypothetical tree graphs and 12.4% of
graphs with lowe values. hypothetical dual graphs have scores higher than 70.
k-NN ComparisonWe also perform comparative (un-  As our scoring model works for all feature selections, we also
trained) k-NN classtation (seé\ppendix A.Z2or details) to calculate the scores for reduced linear/quadratic variables. We
see how cross validation accuracy changes. The hypkst the average scores for all existing and hypothetical graphs
parameterk, number of neighbors, is set to be the oddfor both tree and dual graphsTiable 3 Although using
numbers between 1 and 19. Because we only! lexisting di erent parameter values, especiallgratt r values,
graphs as positive data, we synthesize negative data setéhyences the average scores, the overall average score pattern
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our scoring model using existing graphs iT,sahd we
calculate scores for all graphs. We set a thrésholdx
average score of §etwhere 0 < 1. The graphs iR that

have scores oft will be considered RNA-like, and the others
will be considered as non-RNA-like. Again, wee dine
accuracy to be the percentage of existing graplisainare
correctly classifed as RNA-like. We also calculate the
percentage of graphsHrthat are considered RNA-like. We
perform such predictions using new and reduced linear/
guadratic variables.

The prediction accuracy and percentage of RNA-like graphs
depend on the threshold we set. Since we are clustering graphs,
not selecting top candidates, we seek high RNA-like
percentages. On the basis of our observations of average
scores iffable 3and some trial and error, wel that for tree
graphs, setting= 0.5, 1, and 1, respectively for new features,
reduced linear and quadratic variables yiel&3%9 RNA-
like percentage and 2% prediction accuracy; for dual
graphs, setting = 0.4, 1, and 1 yields 33%% RNA-like
percentage and 788% prediction accuracy. The correspond-
ing accuracies and RNA-like percentages are recdraele in
4. We plot the prediction resultsHigure 9 where correctly

Figure 8.Scoring results for new featws@sde Top two plots show  classied and misclassifed newly added existing graphs are
scores of tree and dual graphs, with a color bar indicating homgpresented by dirent symbols.
di erent colors represent elient scores. The two middle plots are

histograms of existing graph scores on a probability scale. The %9hle 4. Prediction Test Restts
bottom plots are histograms of hypothetical graph scores on a '

probability scale. tree predictions
. sande linear uad
Table 3. Average Score Comparisons _ d
scoring accuracy (%) 82.35 76.47 76.47
tree graph average scores RNA-like (%) 49.49 62.03 63.41
sande linear quad k-NN accuracy (%) 43.82 35.00 41.76
_li 0,
all graphs 46.87 88.60 78.12 . RNA-like (A’o)/ 11597506 25%2941 9";62 .
existing 73.84 90.45 74.51 -means R";‘\l‘fl‘,fcyo/( %) aen Lon 62 o8
hypothetical 45.89 88.54 78.25 -like (%) : : :

dual predictions
dual graph average scores

sande linear quad SEI i Medl GJIED)
all graphs 31.11 78.32 71.26 scoring accuracy (%) 88.24 73.53 85.29
existing 76 '94 78 '82 67 '66 RNA-like (%) 33.31 62.34 65.89
hypothetical 31.06 78.32 71297 k-NN accuracy (%) 59.12 57.65 62.94
i RNA-like (% 16.30 23.60 15.22
®Tree and dual graph average scores usingarele features or K-means accurac; (U)AJ) 97.06 85.29 70.41
prior reduced linear/quadratic variables. For each feature selection, RNA-like (%) 7115 49.93 5150

the average scores of all graphs, of existing graphs, and of hypothetical ] ) )
graphs are listed. By use of new and e features or prior reduced linear/quadratic

variables, the clagsition accuracy of newly added existing graphs

_ . anpd the percentage of RNA-like graphs are calculated for scorin
for existing and hypothetical graphs depends on the grapiyqe|, k_F,)\]N’ andgK-means. grap g

distributions. Compared with prior features, oursrawl e

approach spreads out the graphs while clustering the existing

graphs. Henceandelead to a much larger average score for

existing graphs compared to hypothetical graphs. The priorWe can also compare our scoring model with K-means and

features yielded more similar values for all graphs; for quadradtiblN by conducting similar prediction tests. For k-NN, we use

variables, scores for the hypothetical graphs were even highas positive data set, and we randomly generate 10 equal sized

than those of existing graphs. negative data sets frétnand we perform predictions for the
Predictions Using 2015 and 2018 Known RNA  test seP. The prediction accuracy ised as above, and we

Databases.To analyze the predictive power of our model,take the average accuracy and RNA-like percentage over 10

we perform prediction tests on newly idedtiexisting tree trials with the 10 negative data sets. The prediction results are

and dual graphs since 2015 and 2018, respectively. The 20&8orded ifmable 4 and we plot the results of trial Figure

tree graph datab&3econtains 46 of the 80 existing tree 9 for comparison. The K-means clustering is eaoted by

graphs, and the 2018 dual graph dafdlzaseains 87 of the  our specication of existing graphs because this unsupervised

121 existing dual graphs. We take these older existing grapha@soach does not rely on our labeling of graphs, but the

our training seT, and we include the newly added existingrelevant accuracy changes. These accuracy results are recorded

graphs and all hypothetical graphs as our tést\&fet train in Table 4for comparison.
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Figure 9.Scoring model and k-NN prediction results using the three feature selections. The nedlgxidginty graphs are represented by red
dots if correctly classd as RNA-like and by red crosses if miselhss non-RNA-like.

The comparisons ifable 4show that using nesvande DISCUSSION

features achieves highest accuracy except for dual grggh have developed a new way diidg feature variables for
predictions using k-NN. Among the three prediction methodgaG graph clustering using Fiedler vectors. This feature
K-means often obtains the highest accuracy 8778 and  sglection is based on the one-to-one correspondence between
this is followed by our scoring model with accuracy of 73 graph vertices and Fiedler vector components. By using the
88%. The k-NN approach comes last, with accuracy of 35jopesand the mean squared erof the linear regression for
62%. We observe the same pattern for the RNA-likeorted and scaled Fiedler vector componentspdvénat
percentage: K-means obtains 806, scoring model has existing graphs tend to have ¢malues along witvalues of

33 65%, and k-NNnds 9 25%. Moreover, if we compare around 1. When we visualize the graph distributiorsamith

the clustering plots of K-meansFigure 7to the plots of  eas planar coordinates, we see how this high concentration of
scoring model and k-NN frigure 9we see that K-means and existing graphs at the bottom makes it easier for K-means
our scoring model have similar clustering patterns. These t&twistering to classify existing graphs into the RNA-like group.
methods cluster RNA-like graphs together in one region, adé a result, we achieve a sigmit improvement in K-means

the region is similar but smaller for our scoring model, which ustering accuracy. Only 4 out of 80 existing tree graphs are
consistent with its lower RNA-like percentage. HoweveRlisclassed, compared to at least 18 out of 79 misddssi
except for the and e features, k-NN identis two separate with prior variables. For dual graphs, only 2 out of 121 existing

clusters of RNA-like graphs. This may be because using pibf Misclassid, compared to at least 29 out of 118
features, the existing graphs are more spread out, so {Rclassed before. Moreover, these misctessyraphs all

algorithm identes two RNA-like clusters. Also the negative avehonly.t% I|<nown RN'E‘) strufctLgE,Awh{Ie |ct)reV|oust, sorlne
training data set for k-NN is drent each time, so there is graphs with large number o structures were aiso

L ) misclassed.
some randomness in its clustering.

Overall, we see that our scoring model works best with t The current K-means misclassi graphs are shown in
' 9 fE‘nigure 10with corresponding known RNA structures listed.
news and e features. On the basis of the average scores,

tinauish g f vbothetical o : he 4 tree graphs were also miscESiising reduced linear
distinguishes existing from hypothetical graphs using n&Wjapies, but the 2 dual graphs were correctly classifed before.

features. The average scores are important for selecting suitghllg o\ rrent misclassi graphs tend to have a large number
threshold in clustering so that the RNA-like percentage is ngf vertices. These motifs tend to have junctions, and thus their
too low. In the prediction test, our scoring model with newsygjues are higher. In K-means clusteringe iijhe graphs
features achieves 82.35% and 88.24% accuracy for tree grdconsidered non-RNA-like. Because the database of known
dual graphs, respectively. Though the accuracy is lower trRNAs has relating few higher-order junctiovs ¢r more-

the 97.06% using K-means clustering, its RNA-like percentaggy junctionsj clustering based on known structures will
(49.49% and 33.31%) is lower than that of K-means (78.62fifevitably be less accurate for graphs with higher-order
and 71.15%). junctions.
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threshold for top candidtates. This aspect is particularly
attractive for RNA design. Wl that our new features work
best with the scoring model because the existing graph
distributions become more clustereéridnre 11we present
our top scored RAG hypothetical graphs using our scoring
model andandefeatures. The parameters arel, =5,r=
1.5. For tree graphs, the 42 candidates have sca8sedr
dual graphs, the 70 candidates have scores of >99.9. We set a
such high threshold for dual graphs because there are 110 546
hypothetical dual graphs up to 9 vertices. As we see from
Figure 11 our candidates cover a wide range of number of
verticesn (most small graphs are existing). Tree graph
candidates with both branched structures and highly linear
structures appear. This indicates that our algorithm does not
have bias for graphs for smailt highly linear folds. We hope
to explore design of these candidates in future work.
Another potential use of our scoring model indasimilar
existing motifs for a given graph. This can be useful for
mutation experiments where we seek to change an RNA 2D
structure into an alternative, similar graph topology. In our
) ) _ _ . scoring model, scores that a graph receives from all existing
Figure 10.Graphs misclased as non-RNA-like by K-means using it are calculated. Existing motifs that are closer to the
news ande features. The corresponding known RNA structures are . . . .
shown, with stems in red. graph with heavier weights contribute more scores, and these
motifs are considered more similar to the given graph. Hence,
For k-NN classtation, our 10-fold cross validation W€ €an rank the existing motifs in descending order in score.

accuracy using the new features increases compared with que can adjust the parameteasid in eq 1as appropriate

linear variables, but the accuracy drops when comparing wifice Methodsfor more details on parameter value choices).

full quadratic variables, especially for tree graphs. In our prigf€ €an also limit the search range to search for existing motifs

work®® using all ve (independent) quadratic variables With vertex numben close to that of a given graph. For

increased the accuracy B§% compared to a partial set of €xample, by setting=1, =15r=1.5 (we increasehere to

variables. reduce the impact of weights, since we are more interested in
Our proposed scoring model for novel RNA motif selectiograph topology similarity) and limitimgp be between 6 and

not only incorporates weights (number of known RNAS8, we can perform a motif search for tree graph 7_5. The top 6

structures) for existing graphs but also allows setting similar tree motifs found including 7_5 are shown in order

Figure 11Top scored RNA-like candidates using new clustering vaenbke§Ve show the tree graph candidates with scor88 ahd dual
graphs with scores of >99.9.
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Figure 12.Similar existing motifs for (a) tree graph 7_5 and (b) dual graph 3_6. The similarity ranking goes from left to right.

from left to right ifFigure 1a. For each motif, the number of https://pubs.acs.org/10.1021/acs.jpcb.0c10685
corresponding known RNA structures is written below.

Using the same parameter values and limitinbe 3, we  Notes
perform a motif search for dual graph 3_6. The existing motifshe authors declare no competingncial interest.
are listed irrigure 1B in descending order of similarity from
left to right, and their numbers of corresponding known RNA Ak NOWLEDGMENTS

structures are given below. We see that motifs with more . L : . . .
known RNAs are not always ranked the highest. In our recehfis article is dedicated to Ruth Nussinov for her pioneering
work on the SARS-CoV-2 RNA. wengel minimal mutations  contributions in nucleic acids using computational biology. We

that transform a FSE pseudokiogiire B) with dual graph thank Dr. Swati Jain for her helpful discussions and comments.
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3_8 and 3_1 require 4 mutations. Here, in agreement, we sggant R35GM122562 and by a RAPID Award from the

higher rankings for 3_3, 3 2, and 3_5 than the other twcg\lational Science FoundatioDivision of Mathematical
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