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Daniel A. Beard and Tamar Schlick?
Department of Chemistry and Courant Institute of Mathematical Sciences, New York University
and Howard Hughes Medical Institute, 251 Mercer Street, New York, New York 10012

(Received 13 October 1999; accepted 8 February 2000

We apply our new algorithms presented in the companion pdpED: long-time-step inertial
dynamics, IBD: inertial Brownian dynamic$or mass-dependent Langevin dynamit®) with
hydrodynamics, as well as the standard Brownian dynani&fa) propagator, to study the thermal
fluctuations of supercoiled DNA minicircles. Our DNA model accounts for twisting, bending, and
salt-screened electrostatic interactions. Though inertial relaxation times are on the order of
picoseconds, much slower kinetic processes are affected by the Brown@mnertia)
approximation typically employed. By comparing results of LTID and IBD to those generated using
the standardBD) algorithm, we find that the equilibrium fluctuations in writhing number, Wr, and
radius of gyrationRy, are influenced by mass-dependent terms. The autocorrelation functions for
these quantities differ between the BD simulations and the inertial LD simulations by as much as
10%. In contrast, when the nonequilibrium process of relaxation from a perturbed state is examined,
all methods(inertial and diffusivé yield similar results with no detectable statistical differences
between the mean folding pathways. Thus, while the evolution of an ensemble toward equilibrium
is equally well described by the inertial and the noninertial methods, thermal fluctuations are
influenced by inertia. Examination of such equilibrium fluctuations in a biologically relevant
macroscopic property—namely the two-site intermolecular distance—reveals mass-dependent
behavior: The rate of juxtaposition of linearly distant sites along a 1500-base pair DNA plasmid,
occurring over time scales of milliseconds and longer, is increased by about 8% when results from
IBD are compared to those from BD. Since inertial modes that decay on the picosecond time scale
in the absence of thermal forces exert an influence on slower fluctuations in macroscopic properties,
we advocate that IBD be used for generating long-time trajectories of supercoiled DNA systems.
IBD is a practical alternative since it requires modest computational overhead with respect to the
standard BD method. @000 American Institute of Physid$s0021-9606)0)50817-4

I. INTRODUCTION dius of gyration,R;—to those generated by Monte Carlo
) ) _ sampling for a 600-base pdiop) DNA plasmid. In addition,
In the previous articfewe introduced two new algo- astimates of the translational diffusion coefficient, a measure

rithms for integrating the inertial Langevin equation with gengitive to the distribution of molecular configurations,

hydrodynamic coupling between the particles in a system, . .oq for the three schemes. This agreement, used to validate
LTID (long-time-step inertial dynamizsand IBD (inertial

) ; . IBD and LTID, is expected as neither equilibrium configu-
B“’W”"'?‘” dypam|c)s In Ref. 1, we showed Fhat !‘TlD’ Wh"(.a ration distributions nor molecular diffusion coefficients de-
employing time steps longer than the inertial relaxation

times, is a consistent numerical integrator for the LangevirPend on the mass of the particles in the system. However,

equation and captures inertial effects ignored by Browniar{"2SS May influence the rate of transition between configura-

dynamics(BD). IBD is a cheaper inertial integrator which is tions i )
more accurate than BOn terms of the statistical properties Indeed, for our DNA model, we find that certain dy-
of Langevin trajectoriesfor time steps comparable to those N@Mic propertiese.g., autocorrelation functions of the geo-
used in BD. Here we compare the dynamics of elastic modMetric descriptors Wr an®,) are sensitive to the diffusive
els of supercoiled DNA systems based on the two inertiaRPProximation made in BD. Although inertial relaxation-
algorithms to that based on the noninertD) algorithm of time constants are on the order of picoseconds, there exists a
Ermak and McCammof. non-negligible coupling between fagiicosecongiand slow

We show that all three simulation algorithms appropri- (microsecontiprocesses. This coupling influences the kinet-
ately sample the configurational space of the canonical erics of global conformational changes in a mass-dependent
semble by comparing the realized probability distributions ofmanner. Using the autocorrelation function as a convenient
two global DNA descriptors—writhing number, Wr, and ra- measure of the rate of fluctuation of stationary stochastic

variables, we note differences between the massless and the

dAuthor to whom correspondence should be addressed; electronic maiinertial _SyStemS of _1% and 10% for the rates of Wr ﬁyj
schlick@nyu.edu fluctuation, respectively.
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The behavior predicted in the low-time-step limit of tion of LTID, IBD, and BD for the DNA model. In Sec. I,
LTID is an accurate representation of inertial dynamics asve present the following results:
governed by the Langevin equation. This was shown in Ref(
1 by comparing computational to theoretical results. LTID is
semianalytical, based on propagating the frictional modes
over finite time steps, and is thus more expensive than IB 2
and BD. However, the LTID autocorrelation functions pro- o equilibrium configurations used to calculate the time
vide a benchmark of correlation structure to which the results  ¢.gie for the slithering motion of a 1500-bp system
from IBD and BD can be compared. We show that IBD, (3) equilibrium motions—translational diffusion coeffi-

based on a singular perturbative expansion of the Langevin cients, equilibrium configuration distributions for Wr
equation, matches the inertial behavior of the Langevin equa- gnqg Ry, and the Wr andR, autocorrelation functions for
tion when the numerical time step is chosen appropriately. g 600-bp supercoil calculated from LTID, IBD, and BD
Since IBD is much less computationally expensive than trajectories,

LTID and is competitive with BD in terms of CPU usage, we (4) juxtaposition kinetics—mean juxtaposition times from

1) CPU—analysis of the computational costs associated
with the two new algorithms in comparison to the per-
formance of BD,

) internal time scales—computed frictional eigenmodes

show that the IBD algorithm can be usédt a relatively equilibrium trajectories of 600-, 900-, 1200-, and
modest computational cost over BD protogoken inertial 1500-bp supercoils based on IBD and BD,
effects may be important. (5) nonequilibrium motions—ensemble folding from a per-

We demonstrate this by using IBD to simulate the iner-  turbed state to equilibrium of a 600-bp system, calcu-
tial dynamics of systems on size and time scales previously lated using LTID, IBD, and BD.
accessible only to BD. Specifically, we analyze the effects of
inertia on the bi0|ogica||y important process of Q'Mtapo_ We conclude in Sec. IV by summarizing inertia’s significant
sition. This process refers to the close Spatia] approach dﬂﬂuence on the time scales of thermal motions contrasted to
linearly distant sites along the DNA contour. DNA site jux- its lack of influence on the mean motion of a statistical en-
taposition can depend critically on superheliégityand is semble, and by recommending IBD as a viable alternative to
important for site-specific recombination reactibhsin  the standard BD scheme.
prokaryotes. Juxtaposition also plays a role in other pro-
cesses, sych as transcription initiatiqn, where (_Jlistant D[\IAL METHODS
domains interact, often through protein modulation. The in-
fluence of supercoiling on the dynamics of juxtaposition has ~We have developed feasible methods for simulating the
already been studied using BD simulations of DNA plasmidsdynamic behavior of macroscopic models of biopolymer sys-
ranging in size from 600 to 3000 BpCalculations have fo- tems governed by the inertial LD equation with hydrody-
cused on estimating juxtaposition times as a function of\amic interactions.Here, we apply these methods to a com-
DNA superhelicity, site separatidhand the ionic environ- Putational model of supercoiled DNA.
ment, as well as on deducing the responsible mecharfisms.
We show here that the mean juxtaposition times for 1200A. The DNA model

and 1500-bp plasmids depend on whether an inertial or non- The bead model of supercoiled DNA that we use here

inertial algorithm is used. The rate of fluctuations in inter- . .
. . : .. . h n intr nd char riz r
molecular distance increases and the mean juxtaposition th)eaS been introduced and characterized by our gftnd

1-15 ;
decreases by 6% and 8% when inertia is incorporated iny others. Appropriate parameter values reproduce ex-

1200-bp and 1500-bp systems, respectively. An 8% differ_perlmentally observed properties of large DNA. Though

. . SO rior studies of the dynamics of this model have used BD,
ence in mean juxtaposition time for the 1500-bp system corp y

q giff ¢ ab b he IBD and the values for the model parametémich as bending and
responds to a difference of about A8 between the an twisting elasticity constantsare expected to be equally valid

BD formulations. This difference is surprisingly large on the, o1 the noninertial Brownian and the inertial Langevin
picosecond time scale of the frictional relaxation of the i”er'descriptions of the dynamics since they are calibrated to re-
tial modes. o o _ _ produce properties, such as equilibrium configuration distri-
As another application of inertial dynamics, we studiedptions and diffusion coefficients, that do not depend on the
the relaxation from a torsionally stressed planar circle t0 gnasses of the particles in the system.
supercoiled state. From a large ensemble of folding trajecto- The DNA system is represented by a seriesNoton-
ries (~500) computed using LTID, IBD, and BD, we do not pected beads. A closed DNA loop is modeled by connecting
detect any statistically significant differences between théeadi=N to beadi=1. Associated with each bedds a
predictions of the three algorithms. position, r;, and a local coordinate system of vectdes,
These examples show that mean folding pathways t®,, and c;} which define the rotational orientation of the
equilibrium are weakly mass dependent, while slow kineticchain. A complete description of a conformation of the sys-
processes resulting from equilibrium fluctuations are sensitem requires specification of both the position vecst@nd
tive to inertia. For the biologically important juxtaposition the {a,b,c} triplet for i=1,...N. Alternatively, one can
process, our algorithm IBD is a preferred scheme. specify the position vector and the Euler andles, 3;, v},
In Sec. Il we present the computational model for theto describe the rotation of the{ 1)th to theith coordinate
DNA structure and energetics and the detailed implementasystem for each successive béad.
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The potential energy is modeled as the sum of fourber describes the number of self-crossings of the closed
terms: DNA helical axis, averaged over all planar projections of the
three-dimensional space curdhus it is generally noninte-

E=EstEp+EHE., @ gral). It can be approximated using the following discretiza-
to account for stretching, bending, twisting, and electrostatigion of the Gauss double integrs:
interactions, as follows. N
The stretching energg,, is computed from Wr= 1 (P =) X (rjei—ri)-(rj—ri) )
h N 4m =1 7 Irj—ril®
Es=§ izl (Iri=rical =10 (20 The radius of gyration is a measure of the DNA polymer

size. It is defined as the root-mean-square displacement of
wherel is the resting length of each interbead segment anghe hydrodynamic bead centers from the center of nfass:
[o=L/N (4 nm herg, wherelL is the target length of the N )
DNA molecule. The stretching energy is considered a com- e i 2 r %)
putational device to restrain the length of the DNA to the " NE Y
target length. Setting the stretching constant ko
=1500;kBT/I(2) results in deviations in realized segment B. Hydrodynamics calculations

lengths of less than 1% d§.
The bending energyE,,, is calculated from the set of The movements of the components of the DNA model

angles {B,}, denoting the deformation between the are c_oupled_to one another _thro_ugh the gction of th(_a viscous
(i—1)th and theth segments: mgdlum: This wscouslcouplllng is approxmafce(_j by incorpo-
rating either the configuration-dependent friction tenZor
AN ) into the LD equation, or the diffusion tensbrinto the IBD
Eb:fo ;1 B 3 and BD equations as previously outlined. For IBD and BD
we use the Rotne—Prager diffusion tenSbFor the LTID
whereA denotes the bending rigidity constant, which is ex-a|gorithm, we construcZ from the inverse of the Rotne—
pressed af =L kgT, corresponding té\/l,=12.%gT fora  prager diffusion tensor.

bending persistence length,=50 nm;® and a segment For anN-bead systenD is a 3\ 3N matrix written as
length oflg=4 nm.

N

1
2_ "
Rg_N izl

The torsional angle between beads- (L) andi is given Diy D1z -+ Dy
by the sum of the Euler angles;+ y;, and the torsional Doy Do --- Doy
energy,E,, is calculated as D= . : 9)
N
C Dni Dnz -+ Dww
Etzjz (@it 7~ o), 4 _ . _ . _
0i=1 where eaclD;; is a 3X3 matrix representing the interaction

where ¢, is the equilibrium excess twist due to superhelicalPetween théth andjth beads. For the Rotne—Prager tensor,

winding: eachD;; is calculated frort?
= (| keT
bo=2m0(lo/ly). 5) (—B )| for i=] (same bead
3mnd

Hereo is the superhelical density, amglis the DNA helical
repeat length of about 3.55 nm. The torsional rigidity con- D, =4 ( kgT )

stant is set ta€C=3x 10 *? erg nm*®
The electrostatic energy is approximated by the Debye—

|+r”r5 & E|——'r”rﬁ
ra 2r5\3 rf

ij ij

8yl

Huckel potential associated with point charges located at the L for i+ (differentbeady
centers of the beads: (10
(vlg)? e KTij whered is the bead diameter ang is the viscosity of the
E.= , (6)  surrounding fluid. The vector;; is equal tor;—r;. The

SRR quantityr; is equal tol|r;—r;|%.

wherev is the effective linear charge density along the chain,
e is the dielectric constant of water,lis the Debye length,
andr; is the scalar distance between beadsdj. The value
of v is parametrized according to the method of Stitftep The simulation algorithms were introduced in Ref. 1.
that the far-field potential predicted by E@) matches the Here we present the implementation of LTID, IBD, and BD
solution to the nonlinear Poisson—Boltzmann equation for dor the above-described DNA model. In the following sec-
charged cylinder in an ionic solvent. For a monovalent saltions, v"e %3\ is the collective velocity vector for thé&l
concentration of 0.04 M, k=152 nm andv=-3.92 particles in the system at th&h time step. The vector”
enm .. e 3N is the collective position vector. The entries of the

We use the radius of gyrationRg) and the writhing  diagonal matrixvi € 533NN are the masses of particles. The
number (Wr) as convenient measures of the macroscopigositive definite friction tensoZ(r(t)) e )®3N"2N s related
structure of our supercoiled DNA model. The writhing num-to the diffusion tensor bg =kgTD 1.

C. Simulation algorithms
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1. LTID For each bead, we first calculate an estimate of the finite

The LTID algorithm requires an eigenmode decomposi—mtatlon about they; axis:

tion of the matrixA=M~1Z=kgTM "D, In practice we mg,
construct the decomposition &f by first factoringD [which AOZ* = g_[l_ e~ (&a/m)307
we have calculated from Eq10)]: &
_ T m,
D_LEL ’ (11) _l_gi At—j(l—e_(gai/mai)At)
g

where, is a diagonal matrix. Since our system is composed 8

of beads of equal mass), the matrixA can be written as X (7, 47, (17)
A= kB_T(LELT)fl:kB_TLEflLT (12)  The local coordinate system is then rotatedo® ™ :
m m ' '
. . . . . . Antlx _gn
which is identical to the decomposition introduced in the ! t
companio_n papefr A=LALT, where_ the entries o_f the diag- Ein+1,* = cogA®™ )b+ sin(AO™ )l (18)
onal matrix A are equal tckgT/m times the entries of the i i
matrIXE . ) Cin+l’*=—Sil’l(A@g_’*)bir]'f'COE(A@gf*)Cin.
The correlation structure of the random force term can i i
be expressed as The tilde notation denotes the initial estimates of the coordi-
kTS nate axes after the rotation step alone. A further modification
megmTy _ Z7°B Tmno, T (described in the followingof the local coordinate axes is
(PN =3 Z=LL dmn, (13

associated with the translation step because of the constraint

where the subscripts and m refer to time stepg,, is the that the beads rotate only about #eaxes.

usual Kronecker delta. and the matiixis a square root of The initial estimate of the position coordinates is given
the correlation matrix: by
rn+l,* — rn+ L[A—l(l _e—AAt)]LTUn

— 2mkgT 12
L=/ —p LA (14) FLA T IAt— A" (1 —e MY ]LT(gl+gn),

According to the procedure outlined in Ref. 20, a random (19
force vector having the proper correlatifiag. (13)] can be  where
Iculated f the ab i
cacuae_ rom the above via o= — M VE(r") 20)
fr=Lp, (15 is the systematic acceleration acting on tAeconfiguration,

A -
wherep is a vector of uncorrelated random numbers chose@ddr is the random acceleration due to the fof¢e
from a Gaussian distribution with zero mean and unit vari- 10 enforce the constraint that the beads are free to rotate

ance.(See also Note added in proof in Ref. 1 of an alternaONly about thea; axes, we recompute the local coordinate
tive procedure.Note that systems of the particles after the position vectdf,'* has
been calculated. Namely, we updag so that it remains

_LT_kaBT o 2kgT MA — 2|<BTZ tangent to the DNA segment:
At At At T
al b= (P L @)

For our DNA model, the torque on each bead acts onl)we definesal ™ 1* =an* 1% _an*1x  since we require all
1 1 1 -

in the a; direction and the random torque} , , is chosen . . ;
) o ) 8 i rotations abouta; to vanish, the new displacements are
from a Gaussian distribution with zero mean and variancgg|clated-°

given by

ol T 5bin+l,* — (5ain+1,* _’Bin+1,* )“’air1+1,* (22)
B

n 2\ ~
()= 3¢ ¢ar (18)  and thenb’M*1* =B+ 1% 1 spn 1%  Thenb 1* is deter-

mined as the component bfi““** perpendicular t(ai”“'* :

LTID implementation for DNA modeRnalogous to the

application of LTID to a simple harmonic oscillator given in b/ —(prtix.

ain+1,* )ain+l,*

n+1lx _
the companion papérwe construct an algorithm that is i _||b/n+1,*_(b,n+1,*'an+1,*)a.n+1v*||' (23)
second-order algorithm in its treatment of the systematic ' : ! !
forces based on calculating a first-order estimate of the corfinally, ¢ “** can be calculated from the cross product:
figuration at the Ki+1)th time step and using this configu- cn 1x =a{‘*1'* x bt 1k (24)

ration to make an estimate of the force acting at time (
+1). We denote the first-order estimate of the configuration =~ Then using the first-order coordinates, we calculate an
by the bead positions"*1*, and the local coordinate sys- estimate of the systematic acceleratigbfl'* , and torques,

tems{a,b,c}"*1*, 7071* acting on the system at the 1)th time step.
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The final update of angular velocity and position is ob-This is the familiar random displacement used in the stan-
tained by averaging the systematic torque over the intervaldard BD algorithm. The random displacements can be calcu-

lated from?
Qn+1 Qn e (&0, /M)At~ 11 _ o= (&5,/my)At —
a [ ] R"=Lp, (32)
X[, + )40 (25) where L comes from the Cholesky factorization AZD
S, g S, 3 r.g;

=LLT, and againp is a vector of uncorrelated random num-
bers chosen from a Gaussian distribution with zero mean and

8 _
AOZ = g—[l—e (fai/mai’“]ﬂgi unit variance. The random angular displacements are chosen
& from Gaussian distribution with variance given by
L1 Me, 2k TAt
At (1—e (/M) (07 2= (33)
ga gai o5 aI
X[(72, 70ty 470 . (26) IBD implementation for DNA modeRAnalogous to the
. o LTID implementation, a second-order estimate of the sys-
5{‘“=ai”, tematic force is used to update the position at each time step.
B An initial estimate of the position and rotations is made ac-
b '=cogA®} )bl +sin(AG] )cf!, (27)  cording to
Zn+l_ n my
(o Sin(AB®) )b +cogAB] )c A@Q;* g TsaAt+ —(7- —Tgvai)]
We then make the update of velocity and position by ap- % %
proximating the systematic acceleration acting over the time M,
interval to be the average of andg"*** : +AO7, + g—(A®PV;i1—A®PVai)/At,
g
vn+1:Le—AAtLTUn+LA l(l_e—AAt) (34)
D
XL 3(g2+92" ) +a7], (28) f““*‘f”ﬁ{f”AH—(f” - s)}

M= LTA 7Y (1 —e A2 LT+ LAY 1At mD
+R" —— (R 1—RM/At.

— AT (1—e MY LT KR+l ) + o], (29) keT

The calculation of the local coordinate systems,
{aPtt* pPti* cM*1*1 . proceeds according to Eql8)
and (21)-(24). Using the coordinates,r"** and
{a”“* b *1* cn*1*1 we calculate estimates of the sys-
> 1BD tematic forcesf”“*, and torqueST”“*, acting at the

(n+1)th time step. The final estimate of the rotations and
Both the IBD and the BD algorithms are expressed inpqsition is made according to

terms of the diffusion matri® and do not require an eigen-

Finally, the calculation of the local coordinate axes,
{a'"!,b"* 1 ¢} proceeds according to EqR1)—(24).

mode decomposition dd. If we define the random displace- . L
ment,R", to be the displacement associated with the random A®ai: g (7§ a T Ts, )At
force applied at theath time step, we can express the IBD '
algorithm as L
1 m ga (Tsa +Tsa_Tsa_TSa *)
3 _
A®2i=§— Toa At —— (1051~ Sa)]
g 8 m,,
o +A07, + S—(AG)P;il—AG)?‘ai)/At, (35
q; _ g
+A07, + g—(A®?,ail—AP,ai)/At,
G
n+1:rn+ 2k T (fn+l*+fS)At

(30) r
r”“—r”+i f”At+—D( —fD)
k T(fn 1+fn* f _f2+l,*)
B
+R”+ (R” 1-RM/At,

kgT
. . . +R"+ R"1—RM/AL.
wherefy is the system force acting at tinth time step. The kBT( )

random displacements are correlated according to Finally, the update of the local coordinate axes again pro-

((RM-(RMTy=2At8D. (31 ceeds according to Eq6l8) and (21)—(24).
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3. BD TABLE |. The distribution of CPU time for the three algorithms among
hydrodynamic calculation@natrix evaluation and decompositipinterpar-
The BD algorithm is implemented in a manner similar toticle force evaluation, and all other worfincluding matrix updates for
the IBD algorithm: LTID) as determined for a 50-bed@00-bp system. The hydrodynamics
calculations involve a Cholesky factorization for BD and IBD, and an eigen
1 decomposition for LTID.
AOY* =70, At+A6]

ra;

a Method At (ps) % CPU, hydro % CPU, force % CPU, other
D (36) BD 10 7 17 75
rtE =g ——fIAt+ R, 100 45 9 46
kgT
n n 10 4 9 86
where theR" and theA®; , are chosen as above for IBD.  IBD 100 27 7 66
As before, the local coordinate axes{al*'*, 10 ”3 4 23
b'*1* cM'1*1 are updated according to Eq&l8) and LTID 1o %0 N 60
(21)—(24). The final update is given by
AOT= (10 T 7oa ¥ )At+AO]
Q 253 S, 8 S, q r.a?
1

locity update Eqs(28) and (29). For this case, only 1% of
D (37 CPU time is dedicated to the calculation of interparticle
P =y (FD+ 0TI AL+ RN forces. At the smaller time stept =10 ps, a greater propor-
2kgT tion of CPU time (4%) is devoted to the calculation of
forces, and the hydrodynamics calculations reduce to 23% of
Il RESULTS total CPU time.

The IBD algorithm atAt=100 ps dedicates 27% of its
CPU time to the calculation and decomposition of the diffu-
sion matrix, and nearly 70% of its CPU time to the matrix
multiplications in the position update equation. Force calcu-

Our smallest systert600-bp, 50 segment,=200 nm can lations make up about 7% of totql CPU time. BD invol_ve_s a
adopt a superhelical form, but is also sufficiently small toIess complicated update step, with fewer matrix multiplica-

make the generation of hundreds of trajectories on a workgons' Therefore BD spends a greater proportion of its CPU

station computationally feasible. For all the simulations con-iMe (45%) on the Cholesky factorization @ compared to

sidered here, the monovalent salt concentration is set at O.dED' . . . .
M. All computations are performed on a 195 MHz/MIPS Table Il reports the computational time involved in gen-

R10000 processor of a SGI Power Challenge computer. Th%ratirg a 1 mstrajectory for the various algorithms. For each

eigenvalue decomposition was performed using the RS mod!Mme step(lO and 100 ps we see that BD requires the Iegst
ule from theeisPAck package. computation and LTID the most. Note that for 10 ps time

To study the behavior of the model system in equilib-StepS the CPU time associated with all methods is roughly of
fium, we generated several trajectories, each of length 1 m&1€ same order of magnitude. However BD and IBD enjoy a
for each algorithm. In computing long trajectories, the hy_speedupfa_ctor averaging 8 when thg time step is increased to
drodynamic matrixeither the friction matrix or the diffusion 100 PS, while the speedup for LTID is less than a factor of 2.
matrix, depending on the algorithnwas not updated at ev- This difference is due to the hydrodynamics update step,
ery time step. Jian, Vologodskii, and Schitkind that it is which is more costly for LTID than for either of the other

possible to accurately reproduce equilibrium and dynami@d0rithms. For ag“’e” trajector;f/ length, hydrodyn?mic l:ph
properties while updating the diffusion matrix every 6 ns.dateS consume a fixed amount of CPU time, regardless of the

We have reduced this value to 1 ns for all simulations re-tlme step.
ported here.

In the simulations discussed in the following below we
study closed DNA loops with with the physiological super-
helical density ofc=—0.06, represented using one hydro-
dynamic beador equivalently one DNA segmerper 12 bp.

A. Computational performance TABLE Il. Computational time for generaina 1 mstrajectory of the

0-bead600-bp system for a given algorithm and time step. Computational

. Table | reports th_e percentage of relative .Compmathnaﬁmes are reported in hours on a 195 MHz/MIPS R10000 processor of a SGI
time that each algorithm devotes to calculations involvingpower Challenge computer. The speediast column associated with in-

hydrodynamics(including the evaluation of the hydrody- creasing the time step from 10 to 100 ps is reported.
namic matrix and its decompositipninterparticle forces,

and all other steps in the update procedure. Because the thethOd At cPut) Speedup
drodynamic matrix is updated at a fixed simulation time in- g 10 78 7
terval, a greater proportion of CPU time is dedicated to the 100 10.9

decomposition of this matrix as the time step is increased. 10 169

Using At=100 ps, we see that the LTID algorithm devotes BD 100 19.2 9
about 39% of CPU time to performing the eigenmode de- 10 108

composition. Another 50% of the CPU time is spent in the LTID 100 114 17

calculation of the matrices involved in the position and ve
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FIG. 1. Computational time associated with perforgnenl mstrajectory for eigenvalues of the matrik —Z. See also Fig. 3.

the three methods as a function of system sig¢ethe number of beads.

Computations are performed on a 195 MHz/MIPS R10000 processor of an )
SGI Power Challenge computer. 10 and 100 ps. FoAt=10 ps, the produck;At is greater

than 3 for the rigid body modes and greater than 6 for the
internal motion modes.

In Fig. 1 we plot the computational time associated with
generatig a 1 mstrajectory as a function of system siz¢, C. Slithering motion
(number of beadsfor each algorithm usingt=100 ps. For Aside from being the basis of the LTID propagation
large N, LTID is more than an order of magnitude more scheme, the eigenmode decomposition allows us to explore
expensive than either BD or IBD. As expected, CPU time
grows asN?® in the limit of largeN. We also see that IBD is
roughly twice as costly as BD.

B. Eigenvalue spectrum

The derivation of the IBD and BD algorithms depends
on the assumption that both the numerical time step and the
physical time scale of the syste(a.g., for configurational
evolution are large compared to the time scale of the fric-
tional decay of the inertial modes. To examine this assump-
tion, we calculated the eigen decomposition of the friction
matrix for a 600-bp system. This decomposition allows us to
visualize the eigenmodes associated with an equilibrium
structure.

For a 600-bp K=50) systemM ~1Z is a 150< 150 ma-
trix, and has 150 independent eigenvalyes}. The distri-
bution of time constantg,r;}={\; %}, for a typical supercoil
configuration is plotted in Fig. 2. Notice that most of the
frictional modes(138 out of 150 have time constants less
than 1 ps. In Fig. 3 we show the supercoil configuration and
the eigenvectors associated with the eight largest time con-
stants. The three largest relaxation times correspond to ap-
proximately rigid translational modes; the next three largest
time constants correspond to motions that are mainly rota-
tional. Unlike zero-frequency normal modes associated with
a Hamiltonian system, the rigid-body modes of the friction
tensor have finite eigenvalues, corresponding to the frictional
decay times associated with these motions. More complex
internal motions decay more rapidly and the aSSO(,:Iated tlmEIG. 3. Eigenmodes of a 600-p0-bead supercoil. The eigenvectors as-
constants are all less than 1.5 ps. For the dynamics calcul@sciated with the eight largest inertial relaxation times (are shown su-
tions presented in the following sections we use time steps gferimposed on top of the supercoil structure.

1i=1.4ps 1i=1.3ps



7330 J. Chem. Phys., Vol. 112, No. 17, 1 May 2000 D. A. Beard and T. Schlick

0.8 0.8
0.6
= 0.6
< 0.4
= 04 0.2
O() 2 4 6 8 10
0.2r

0 100 200 300 400

j
5
5
4 4
by + bala + bsls 3

FIG. 4. Slithering of a 1500-bp supercoil. In the top panel, an equilibrium
structure is shown, with the slithering modg, superimposed. The lower

=
= M
panel shows the motion described by summation of the three largest eigen- © sl 1

mode contributions te. See the text for details.

internal “slithering,” or a bidirectional conveyor-belt-like
reptational motion in supercoiled DNA. We define slithering ,
in our model as the concerted motion of the DNA beads in 0 100 200], 300 400
the direction of the helical axis. For thth bead we calculate
the slithering direction ass;=r;.;—r;_,, and define FIG.5. Decomposition of the slithering mode for the 1500-bp DNA system.
se Re™ as the collective slithering mode for theparticles.  Upper panel: The relative magnitude of coefficieflts} are plotted in de-
This slithering mode is shown in the top panel of Fig. 4 for ascendmg order. Lower panel: The time constgntg for the eigenmodes
DNA 1500 b associated with eacfb;} are plotted. The insets show the magnitudes and
SySt(_am 0 ) p. ) ) ) the time constants for the first ten modes.

Denoting the eigenvectors contained in the mditrifsee

Sec. IIC ] asl;, we decomposs using the linear combina-

|

tion an effective slithering diffusion coefficient:Dg~2
3N X 10~ 8 cn?/s. From this estimate we can calculate the time
5=, bil;, (3g)  required to slither a given distance. For example, slithering a
=1

distance of 500 nnithe length of the DNA contour for a
where the scalarf;} are computed from the inner products System of 1500 bpwould require an average time of

(500 nm¥/2D¢, or about 60 ms. Since the time for reptation

bj=sl;. (39 scales approximately as the cube of the size of the polyher,

The coefficientgb;} are sorted according to descending ab-We expect a 10 kbp plasmid to have a reptational turnover
solute value, and their relative magnitudes are plotted in théme of about 17 s. For the same size plasmid, M%frlesn-
top panel of Fig. 5, with the first ten values highlighted in themates a reptation time of 7 s. This reptation time is charac-
inset. The lower panel of Fig. 5 shows the time constantderistic of the time required for linearly distant sites along the
associated with the various eigenmodes. Again, the first teRNA contour to be brought into close proximity by pure
values are highlighted in the inset. Slithering motion is notSlithering motion. Realistic motions of plasmids—involving
described by a Sing|e mode than can be independenﬂy e)kocal Slltherlng combined with the creation, dele“on, and

cited, but it can be represented approximately by combinin@”ding of branches—results in mean juxtaposition times that
the first fewk modes: scale approximately as the square of the size of the

i 422
‘ plasmid:
Sk= 'E]_ bJIJ .
i=

For example, the motion described By is shown in the We calculated the translational diffusion coefficients,
lower panel of Fig. 4. From Fig. 5 we see that these mode®,, from the dynamics trajectories based on each of the
have approximately equal time constants of about 1.5 ps. three algorithms for several different sizes of DNA super-

Therefore slithering motion decays with a time constantcoils. Diffusion coefficients were estimated from the trajec-
7 Of about 1.5 ps. Using this value with the relati@n, ~ tories of the mean square displacements of the center of
=kgT7s/Nm (wherem is the bead magsve can calculate mass. The center of mass was calculated from

D. Translational diffusion coefficients
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TABLE lIl. Translational diffusion coefficients obtained by BD, IBD, and duces the canonical ensemble in the small-time-step
LTID for supercoiled DNA of various sizes. (differentia) limit, proper sampling of the configuration

D, (X108 cn?/s) space does not degrade/sit=10 ps, as for IBD.
DNA size (bp) BD 8D LTib F. Equilibrium fluctuations
600 12.03-0.11 11.97-0.11 12.05:0.11 . .
900 9.15-0.09 9.18-0.09 0.09-0.08 We next report on the autocorrelation functions of the
1200 7.76-0.06 7.74-0.07 7.72-0.07 macroscopic properties Wr aril, computed from equilib-
rium trajectories. For each algorithm—LTID, IBD, and
BD—using bothAt=10 and 100 ps, we calculated the auto-
N correlation functions based on ten trajectories of 1 ms each
[ :i S (40) of a 600-bp supercoil. For a given propeiyt), the auto-
emoNE correlation functionC,(7) is given by
andD, was estimated from Ca(r)= ([A(t=7) —(AM)]-[A) — (A1) ]) 42
ts/NgAt [ (| Nsi _ Ng(i=1)y12 AT ([A(t)—(A(1))]?)*2 ’
NSAt ”rc.m. rc.m. ||
t= g ]2::1  BNAt ) (41 where the bracket§ ) indicate averages over time.

) . ] The average autocorrelation functions from all methods
wheret, is the total trajectory length, ard is the number  are shown in Fig. 7. We see that the writhe correlation,
of time steps be_tween calc_:ulat|ons of mean square dlsplacQ;Wr(T), decays much more rapidly than the correlation of
ment. A simulation extending th=1 us was used, antls  the radius of gyrationCe (7). The LTID autocorrelation
was S('.‘\t to 1000 steps. For each estlmate_, five traJeCFor_'(?.stjrves(upper panglat the two time steps are nearly identi-
were simulated to ensure convergence and improve StatistiCs,| and a further reduction it does not effect either func-
1203‘?'6 ”II r?por(t:isltjjt fo; DN'?SSVSEE:SS 0':168_?"[)90':0’ and tion. The solid curvesLTID, At=10 p9 for both functions

p calculated based on BD, »an - or eaChthus represent the correlation structure of the inertial system.

algorithm a tme step of 1(,)0 ps was used. The est|mate§ve use these as a reference for evaluation of the IBD and
based on the different algorithms closely agree.

BD results.
o o The IBD autocorrelation functiongFig. 7, middle
E. Equilibrium distributions pane), in contrast, are sensitive tht. At At=100 ps, the

Plotted in the upper panel of Fig. 6 are the probability!BD Wr and Ry correlations accurately reproduce the corre-
distributions of Wr ancR,, for the LTID algorithm based on ~ ation predicted by LTID(solid lines. However, theCg ()
two different time steps for several 1 ms trajectories of thememory is greatly exaggerated &t=10 ps. This behavior
600-bp system. For each time step a total of ten runs of 1 m§ expected since we have showthat the configuration
each were used to deduce the distributions. The trianglespace is not properly sampled by IBD witfit=10 ps.
represent the distributions calculated using a time step of 100 The BD resultslower panel of Fig. Y deviate from the
ps, while the circles represent the distributions calculategorrelation structure predicted by LTID at both time steps
from a time step of 10 ps. The canonical distributions ofand by IBD atAt=100 ps. Specifically, the BD autocorrela-
these quantities calculated using Monte C&NIC) methods  tion functions at the two time steps are nearly identical and
as outlined recently in Ref. 23 are also plotted for compari-do not approach the inertial dynamics curves. The decay in
son. We see that the LTID algorithm, using either time stepRg correlation is significantly slower for BD than for the
generates probability distributions that agree well with theLTID or IBD.
MC distributions. By fitting the tails of the correlation curves with expo-

The equilibrium distributions of Wr an&®, computed nentials we estimate the correlation time constarjsand
from the ten IBD trajectories of length 1 ms for both time 7r , for Wr andRy, respectively, for all algorithms for each
steps(middle panel, Fig. Bagree with the MC distributions value of At. The estimates are presented in Table IV. In the
for trajectories computed usinfyt=100. However, theR, small-time-step limit At=10 p9, LTID predicts correlation
distributions computed usingt=10 ps do not match the time constants ofy,=0.81 us andTRg=4.8 us, for Wr and
expected equilibrium distribution predicted by MC. This is R, respectively. The IBD algorithm reproduces these iner-
because the IBD approximation is valid for time steps thatja| correlation times af\t=100 ps but not aAt= 10 ps, as
are large compared to the inertial relaxation times. A timeexpected. BD underestimateg by 10%, regardless of the
step 0fAt=100 is large enough so that ™" is negligibly time step. Therefore, IBD cag be applied using long time

small for all inertial relaxation times\;, and the IBD algo-  ¢tang competitive with BD, and still accurately approximate
rithm samples the same configuration space as LTID anghq affects of inertia on kinetic processes.

MC. Clearly, the time ste@t=10 ps is not sufficiently large
compared to the inertial relaxation times for the DNA sys-
tem.

Corresponding results for the BD algorithilower pan- We next study fluctuations in the distance between two
els of Fig. 6 show that the equilibrium probability distribu- sites on the DNA chain separated by a fixed contour length
tions are correctly predicted. Because the BD scheme reprd-;. Plotted in Fig. 8 is a trajectory of the distana¥),

G. Site juxtaposition
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(a) Writhe and R, distributions from LTID Trajectories:
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(b) Writhe and R, distributions from IBD Trajectories:
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between two bead®eads number 10 and 35,=300 bp in different equilibrium starting configurations until all pairs of
a 600-bp system from an IBD simulation using=100 ps. beads separated hy, bp had achieved juxtaposition.
The distance between bead centers fluctuates between about For example, for a 1200-bp plasmichodeled using 100
10 and 80 nm; the lower value corresponds to a typical defibead$ we measured the time of first juxtaposition for all
nition of close approach, or “juxtaposition® The fluctua- pairs of sites separated by the fixed contour length_of
tions tend to occur over a time scale on the order of tens te=300 bp, or a contour separation of 25 beads. That is, given
hundreds of microseconds. Also shown in Fig. 8 are thea starting configuration, we continued a trajectory until all
DNA configurations at four representative points along thel00 pairs of beads juxtaposed as definedly 10 nm; each
trajectory, with the positions of beads 10 and 35 indicated bysuch juxtaposition gives a single measurergffrom one
green spheres. trajectory. To improve statistics, multiple trajectories were
We define the juxtaposition time; for two sites along run, as follows. We ran 20 BD trajectories, yielding a total of
the DNA contour as the time it takes for the distance be2000 measures of; and an average juxtaposition time
tween them to fall below a threshotl}. Thus, given some (7;)=0.343 ms. Using the identical 20 starting configura-
starting configuration, the juxtaposition time is the smallestions and 20 random seeds, we simulated the juxtaposition
positive value oft for which d(t)<d,. To obtain the equi- trajectories using IBD; an average juxtaposition time of
librium mean(r;), we computed several trajectories from 0.330 ms was obtained. A statistical analysis showed that the
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(a) Autocorrelation functions from LTID Trajectories
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(b) Autocorrelation functions from IBD Trajectories
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(¢) Autocorrelation functions from BD Trajectories
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difference between these means is significé@®tudent’'s to occurmore rapidlyin the inertial system than in the mass-

t-test,p<0.05): juxtaposition occurs more rapidly, on aver- less system. The difference {r;) between the inertial and

age, in the inertial 1200-bp system than in the masslessoninertial case increases from 6% for a 1200-bp plasmid to

1200-bp system. 8% for a 1500-bp plasmid. For reference, also shown in the
Using a critical distance ofl,=10 nm, we also com- figure are juxtaposition times from Huang, Vologodskii, and

puted the mean juxtaposition times for contour lengths of

180, 240, and 300 bp along a 600-bp plasifidble V). The

differences in eStimate@'ﬁ between the two algorithms are TABLE IV. Correlation time constants calculated for a 600-bp system by

not statistically significant for this much smaller system, anditting the tails of the autocorrelation functions for Wr aRg (Fig. 7) with
the dependence dfr;) uponLg is weak, as also deduced by exponentials.

Jian, Schlick, and VologodsKii.Table V also reports esti-

mates of 7,) for larger(900-, 1200-, and 1500-bplasmids ~_“ered Aty 7w (19 7R, (1)
with a site separation of 300 bp, and Fig. 9 displays) BD 10 0.77 4.3
versus plasmid sizévertical bars indicate standard ernxof 100 0.80 4.3
statistically significant §<<0.05) difference between the 10 0.78 6.8
means is indicated by an asterisk. BD 100 0.81 4.8
Interestingly, for 1200- and 1500-bp plasmids the differ-

s i 10 0.81 48

ence between BD and IBD predictions ¢f;) is non- LTID 100 081 48

negligible and significant. Intermolecular juxtaposition tends:
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Schlick (HVS)® for the same system using BD with the sameLTID, IBD, and BD to elucidate statistical differences be-
parameter values. Though the two BD programs are differtween the behavior predicted by these algorithms.
ent, the agreement of the data of HVS data with our BD data  Snapshots from a typical folding trajectofgomputed
is excellent. Also shown are data from Jian, Schlick, andusing LTID with At=10 p9 are shown in Fig. 10 for a 600
Vologodskii® which were obtained using a different param- bp DNA. The starting configuration is a planar circle with
eter set. Namely, we use the salt concentratiorCg£40  Wr=0 andR,=31.83 nm(equal to the radius of the cirgle
mM and a torsional rigidity constar@=3x10 2 ergnm,  This configuration is not present in the equilibrium ensemble
while they useC,=10 mM andC=2x10 2 ergnm. As  because these values of Wr aRrgldo not occur in the equi-
either C or C is increased, the DNA adopts a more inter- librium distributions® As the supercoil relaxes, values appro-
wound structure and juxtaposition times are reduced. priate for the equilibrium ensemble are obtained withinst
This single trajectory only represents one possible fold-
ing pathway. The relaxation time scale must be evaluated
from a statistical ensemble. We therefore calculated 500 such
To determine whether the BD approximation influencestrajectories from LTID and IBD and 1000 from BD using the
kinetics of nonequilibrium processes in addition to equilib-
rium behavior, we examined the folding of DNA from a
planar torsionally stressed circle into a relaxed supercoil.

H. Folding dynamics

Previous studies have examined this relaxation process by 500 | ' ' o
Langevin dynamic® and Brownian dynamic¥:?°based on
a limited numbex(less than 5 of trajectories. Here we com- 400 l

puted ensembles of several hundred folding trajectories for

300

) L]

TABLE V. Mean juxtaposition times for various separation contour lengths
L (see the tejtalong plasmids ranging in size from 600 to 1500 bp, as 200}
computed by BD and IBD. Where statistically significant, the relative dif- BD
ference between the mean times is reported in the rightmost column. See —— IBD

also Fig. 9. 100} X A Huang etal.

O Jian etal 1998

DNAsize(bp) L (bp  (73) (us) (BD)  (73) (us) (IBD) (%) ol— . , ‘
600 900 1200 1500
180 88.2:3.8 88.6:3.9 - DNA Size [bp]
600 240 87.6:3.8 88.1+3.8 -
300 93.0:5.5 93.2:5.6 - FIG. 9. Mean times of juxtaposition of two sites separated by 300 bp vs the
length of the DNA plasmid600—1500 bpas computed by IBD and BD at
900 300 237.67.2 230.4£6.9 - At=100 ps. Vertical bars indicate standard error. The critical distance of
do=10 nm is used to determine juxtaposition, as outlined in the text. A
1200 300 343.67.7 324.9-7.6 6 statistically significant differencep(0.05 fort-tes) between the means is
indicated by an asterisk. BD data from Huang, Vologodskii, and Schlick
1500 300 430.59.1 399.8:8.8 8 (Ref. 9 and Jian, Schlick, and VologodskRef. 8 are shown for reference.

See the text note on differences in models.
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0ps 1 us 2us
Wr=0.0 Wr=-049 Wr=-0.75
R, =31.83 nn Ry =27.06 nm Ry =125.59 nm

3 us 4 us
Wr=-10.81 Wr=-008 Wr——liﬂ
Ry =23.98 nm Re =24.08 nm

Ry=2321 nm

= Wr——l._’ﬁ Wr=-1.47
Ry =22.69 nm Re=22.52 nm Ry =23.04 nm

6 s
Wr=-=1.10

FIG. 10. (Color) Simulation snapshots of 600-bp supercoil relaxation as computed by LTIDAMith10 ps. The eight images, at/s intervals, show
relaxation from a planar circle to an equilibrium structure. The planar circle hasdWandR,=31.83 nm, which is equal to the radius of the circle.

same starting configuration, but different random sgéals  behave similarly to the mean relaxation curves obtained from

the random force Figure 11 shows W(left) and Ry (right) LTID. Writhe relaxes to the equilibrium distribution in less

as functions of timgblack lines for ten of these trajectories. than 10 us; while meanR, undershoots the equilibrium

For BD and IBD we usedit=100 ps and for LTID we used mean for most of the 2@s. The BD writhe andR; evolution

At=10 ps. and corresponding ensemble means are qualitatively similar
The means over each total ensemble of trajectories an® those generated by LTID and IBD.

plotted Fig. 11 as solid red lines. The means plus and minus Minor quantitative differences become apparent when

one standard deviation are plotted as dashed red lines; aiide mean curves for all of the algorithms are plotted together

the equilibrium means of Wr ang, are indicated by hori- in Fig. 12. Here, Wr andR, are plotted as the ensemble

zontal black lines. mean trajectory minus the equilibrium mean. The ensembles
We find that the mean Wr of the LTID ensemble of from the different algorithms follow similar folding trajecto-

trajectories relaxes to the equilibrium mean in aboyt$  ries. The ensemble mean Wr relaxation curves are indistin-

This time scale is substantially longer than the time scale ofjuishable between the Brownian and Langevin descriptions,

equilibrium fluctuations in Wisee Table)l and only small differences are apparent in Byerelaxations.
The radius of gyration, on the other hand, takes evermherefore, the differences between the LTID, IBD, and BD

longer to decay. Between 3 and 23, the mean curve un- trajectories are not significant in the finite ensembles com-

dershoots the equilibrium mean, indicating an ensemble gbuted here.

structures that are, on average, more compact than in equi-

librium. Op!y .after 20;_Ls does the e.nsernble. mean Rf IV. DISCUSSION

reach equilibrium. Again, the relaxation time is longer than

the correlation times reported in Table I. We have shown that biologically important motions of
The mean curves for IBObased on 500 trajectories supercoiled DNA plasmids as governed by Langevin dynam-
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(a) Relaxation Trajectories Computed from LTID

Time [us]

(b) Relaxation Trajectories Computed from IBD

Time [ps]

(¢) Relaxation Trajectories Computed from BD

Og . ~—

Time [ps]

FIG. 11. (Color Ensemble relaxation trajectories for Wr aRgl calculated using LTID500 trajectoriesAt=10 ps, IBD (500 trajectoriespt=100 p3, and
BD (1000 trajectoriesAt=100 ps for a 600-bp plasmid. In each plot, the thin black curves denote data from the ten arbitrarily selected trajectories. Solid
red lines indicate the ensemble mean over the entire collection of trajectories; dashed red lines indicate the mean plus/minus one standard deviatio

Equilibrium means are indicated by horizontal black lines.
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that they allow relatively long time steps in computing the
motions of a macromolecule governed by the Langevin
equation with hydrodynamics. In LTID and IBD, as well as
in the BD formulation, the motions of the particles are
coupled through the potential energy function, which gov-
erns the interparticle forces, and also through the action of a
configuration-dependent hydrodynamic interaction tensor. In
contrast to BD, LTID and IBD have been developed without
assuming that the dynamical system is fully damped, or
noninertial?

The relative importance of inertia clearly depends upon
the property under investigation. Figure 6 shows that LTID,
IBD, BD, and MC all sample the same equilibrium distribu-
tions, providing convincing evidence that our new inertial
algorithms produce valid results. While we expect the stan-
dard Brownian description to be poor when fluctuations in
interparticle forces occur over a time scale that is similar to
(or faster thanthe momentum relaxation times, the effects of
inertia on the behavior of our DNA model are not revealed
when the equilibrium distributions predicted by the various
algorithms are compare(Fig. 6). Nor are the ensemble av-
erage folding trajectories of the 600-bp plasmid strongly
mass dependeltFig. 12). Configurational transition rates in
equilibrium, however, are sensitive to mass. For fluctuations
around equilibrium conformations, differences in the writh-
ing number and radius of gyration autocorrelation function
are noted for the various algorithnigig. 7). Namely, the
autocorrelation decay @, is faster for the noninertigBD)

e u =N case than for the inertidLTID, IBD) cases, WithTRg about
Time [us] ' 3 0.5 us (10%) smaller for BD trajectories than for LTID tra-
jectories. Thus, high-frequency noise is overexaggerated in
FIG. 12.(Color) Mean relaxations for Wr anB for LTID, IBD, and BD as  the BD case compared to IBD, leading to a faster decay of
computed by the same protocol described for Fig. 11 for the 600-bp systeng, memory.
The relaxation curves are nearly identical for the three algorithms. 9 . .
Unfortunately, LTID cannot compete with BD in terms
of efficiency. ForAt=100 ps, LTID requires an order of
magnitude more CPU time than BD to compute a trajectory
ics depend on inertial effects which are ignored by the usuabf a fixed length for our 600-bp systefhable Il). For larger
BD approach. A cursory inspection of this result may lead tosystems, LTID requires about 15 times the computational
an apparent contradiction. That is, if the polymer has inertiatime than BD(see Fig. 1 Investigations of the rate of site
properties, should not the viscous solvent as well? If thiguxtaposition require the calculation of several trajectories of
were so, our use of the configuration-dependent friction tenmillisecond lengttf which are not be feasible using LTID.
sor would be inappropriate since it is derived under the as- On the other hand, the IBD algorithm, derived based on
sumption of Stokes flow. However, it is well known that the a discretization of the Langevin equation or equivalently
motion of DNA systems take place at very low Reynoldsfrom a singular perturbation of the Langevin equatisee
numbers where the Stokes approximation is valid. Howeverthe companion pap8t is much cheaper than LTID since
that the fluid equations reduce to a noninertial form does nolBD captures the inertial effects in a single mass-dependent
imply that the equation for polymer dynamics necessarilyterm (proportional to the time derivative of the systematic
will. The amount of effective damping in the Langevin equa-force) in the position update equation. Thus IBD, an alterna-
tion determines whether or not the Brownian approximatiortive to the standard BD scheme, can be used to study dynam-
is accurate. As we discuss in the companion paper, the levés on time scales competitive with BD. The decision to treat
of effective damping depends not only on the inertial relax-dynamics as noninertial need not, therefore, be imposed by
ation times(which depend only on the masses of the par-limitations on computational resources. Instead, the determi-
ticles and the friction tensprbut also on the potential energy nation of whether to include mass can be made based on
function of the polymer, which is independent of the equa-physical reasoning. Indeed, using IBD, we have been able to
tions that govern the motions of the solvating fluid. generate trajectories of relatively large systeims to 1500

Our new algorithms, LTID and IBD, allow us to calcu- bp) over time scales of several milliseconds.
late long-time dynamic trajectories of elastic models of su-  From these long trajectories we find that, for sn{&00
percoiled DNA. These methods are similar to the BD algo-bp) DNA, neglecting inertia has little effect on the speed of
rithm of Ermak and McCammdrand variations theretfin the fluctuations in intermolecular distana@®ble V); but in
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larger systems the effects of mass are apparent in the juxtéhe simple harmonic oscillatdrapplication of IBD requires
position times(Table V, Fig. 9. Simulating a 1200-bp plas- the proper calibration of the time step. This can be accom-
mid using IBD results in mean juxtaposition times that areplished by comparison of equilibrium distributions to those
6% smaller than the mean times predicted by BD. For 150@enerated from some other method such as Monte Carlo and
bp, this difference increases to 8%. Clearly, inertial effectdy comparison of dynamic properties to those generated
become more important as the system size is increased abdsed on LTID.
momentum relaxation times increase, and thus the Brownian
_approximation becomes less accurate. Biological systems of -, NOWLEDGMENTS
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