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Efficient multiple-time-step integrators with distance-based force splitting
for particle-mesh-Ewald molecular dynamics simulations
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We develop an efficient multiple-time-step force splitting scheme for particle-mesh-Ewald
molecular dynamics simulations. Our method exploits smooth switch functions effectively to
regulate direct and reciprocal space terms for the electrostatic interactions. The reciprocal term with
the near field contributions removed is assigned to the slow class; the van der Waals and regulated
particle-mesh-Ewald direct-space terms, each associated with a tailored switch function, are
assigned to the medium class. All other bonded terms are assigned to the fast class. This versatile
protocol yields good stability and accuracy for Newtonian algorithms, with temperature and
pressure coupling, as well as for Langevin dynamics. Since the van der Waals interactions need not
be cut at short distances to achieve moderate speedup, this integrator represents an enhancement of
our prior multiple-time-step implementation for microcanonical ensembles. Our work also tests
more rigorously the stability of such splitting schemes, in combination with switching methodology.
Performance of the algorithms is optimized and tested on liquid water, solvated DNA, and solvated
protein systems over 400 ps or longer simulations.hWit 6 fs outer time step, we find
computational speedup ratios of over 6.5 for Newtonian dynamics, compared with 0.5 fs
single-time-step simulations. With modest Langevin damping, an outer time step of up to 16 fs can
be used with a speedup ratio of 7.5. Theoretical analyses in our appendices produce guidelines for
choosing the Langevin damping constant and show the close relationship among the leapfrog Verlet,
velocity Verlet, and position Verlet variants. 002 American Institute of Physics.
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I. INTRODUCTION for molecular dynamics algorithms to reduce the overall

computing time by performing electrostatic calculations less

The large-scale size of biomolecular simulations couplegytien than other energy and force componéats., Refs. 9
with the growing demand for higher accuracy and physicallo)_

relevance underscores the importance of developing more

eﬁ|0|ent_ and accurgte simulation methdds'[he _Ewald mations split the direct-space sum into two or more distance-
summation methdd is a well-established technique for . . . . :

. . . .based medium or slow classes while putting the intact recip-
computing electrostatic interactions accurately under peri-

. _13 . _
odic boundary conditions. Truncating the nonbonded inter—rocal term into one of these classés:” Truncation-based

: 4 . - multiple-time-step methods for periodic domains tend to
actiong** is generally no longer considered competitive. The hi | ter fi tep than th based th
particle-mesh-EwaldPME) method is a promising variant ac 'i;/e a argtgr outer t;]meui ep thanR ?semasie .on €
derived from the standard Ewald method. The electrostatigwa summatiorie.g., the methodRefs. 14, 13 in

interactions in particle-mesh-Ewald method are evaluated irHARMM (Ref. 16]. ,A numericql i problem of particle-
a manner similar to that in the Ewald method, with réa mesh-Ewald methods is that the finite number of wave vec-

direc, reciprocal, and correction terms. Particle-mesh-{0rs in the discrete approximation is thought to give rise to
Ewald algorithms approximate the reciprocal componenfruncation and cancellation errofdue to the exclusion of
through fast Fourier transform techniques, following smoothintramolecular interactions” This numerical feature re-
charge and potential interpolation on a grid. This effectivelyStricts the largest timestep used for updating the reciprocal
reduces the computational cost for the nonbonded termi@rm, and hence the speedup that can be achieved with
from order O(N?) to O(N logN).® Still, the computational multiple-time-step/particle-mesh-Ewald methods. The main
cost is high in biomolecular simulations due to both the largeproblem leading to this limitation is the association of the
size of biomolecular systems and the large thermally-entire reciprocal term to a certain multiple-time-step class.
accessible conformational space needed to be sampled. ince the reciprocal term is the sum of all error functions
addition to faster computing platforms and parallel (erf) of pairwise electrostatic interactions, it includes weight-
adaptationg;® multiple-time-step methods have been adaptededuced short-range interactions as well. Figure 1 shows that
the direct component has a “taillslow term$ while the

dAuthor to whom correspondence should be addressed. Fax: 212-995-415"2(,30“3_rocal component has a “headfast compo_nents |_n
electronic mail: gian@biomath.nyu.edu; schlick@nyu.edu practice, work has shown that the corresponding reciprocal

Most of the multiple-time-step methods for Ewald sum-
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Usual PME force terms : ( /?and f") Resulting slow and medium components L . o
FIG. 1. Schematic illustration of the application of the

improved force splitting scheme for PME applied to a
pair of atoms with chargeg, andq, of opposite sign,
fr= v {22 - erfe(pr)] } separated by interparticle distanceThe force switch

Curve crossing indicates that /< has a tail (slow terms)
while " has a head (fast terms)

v \ function used is given in Eq(lO) (_see Fig. 2_ AII_ _
:_,‘:H---- ol {ﬁ e,fc(g,)} \ forces are expressed by their magnitudes for 5|m|c_>l|_C|ty.
2 \. r \ The component$', f¢, andf’ correspond to the origi-
2 N nal forces(left, see text and F,q and Fg, are the
£ Qo‘\ d 3 » final medium and slow forces, respectivétight). Fneq
| eteo N “:~___"“- _ elec I LT includes the modified direct space term without a “tail”
2 o __:_,_,_ A ! - (switched off betweera andb) and the modified van
8 |vaw P | ',/' der Waals term(switched between; and v,); Fgow
§ i/ ! ! Y includes only the modified reciprocal term without a
5 i - “head.” The valuec is the direct space truncation dis-
v R [_A + B : i ‘.J tance used in PME to derive default value of the Gauss-
= re e : L ian parametep, andc+ Ac defines the size of the non-
Distance r —»- bonded pairlist.

force must be updated at most every 4 fs to conservé‘ndri andr; are vector coordinates in the primary cell. We

energytl18 use (nonbold rj; , to' denote the scalar magnitude Gf , .
Here we present a new distance based splitting schemE!€ total electrostatic energy is then expressed as

to rearrange the direct and reciprocal sums so that the near- ,

field contribution to the reciprocal term is removed. This Eeleczlz > 44 (1)

work represents an enhancement of our prior implementation 2

for microcanonical ensembfEs(which simply uses the re- ) ) o o

ciprocal term for the slow fordesince the van der Waals Where the prime in the summation indicates that ihgj

interactions need not be cut at short distances to achieygtéraction fom=0 is not counted. The summation ovef

moderate speedup. We also test more rigorously the stabili§@"s in Eq.(1) extends over alN atoms in the systemi {j

of such splitting schemes as well as switching methodology™ 1+++-N) With partial charges(q;}. The slowly-decaying

than a recent repoff whose short test simulations may not nature of this long-range potential renders a straightforward

be representative. summation impractical. Ewald, multlpolg, and othe[3 methods
Specifically, we present both Newtonian and Langevinl@ve been developed to remedy this probféni: The

multiple-time-step/particle-mesh-Ewald  integrators, devel-EWald §ummatloﬁ effectively splits the task of evaluating

oped for the programmeeR 2 with extensions to canonical, Ed- (1) into two parts using a pair of complementary func-

isothermal and isobaric-like ensembles as implemented iHONS €rfE) and erfcg)=1—erf(x), where

AMBER (based on Berendsen’s weak coupling schéffes

The combined approach is found to be stable and accurate erf(x)= i fxeftzdt.

for outer time steps of 8 ffNewtonian and 16 fs(Langevin, Jm Jo

with mild damping. Speedup factors approach 7 and 8 for

Newtonian and Langevin, respectively, relative to single-For a detailed theory of Ewald summation, see Kittdlor

time-step integrators at 0.5 fs for particle-mesh-Ewald protoexample. The resulting Ewald formula for the electrostatic

cols. Following a brief introduction to the Ewald method in energy then becomes

Sec. Il, we discuss distance-based force splitting in Sec. llI  edy er

and present the multiple-time-step/particle-mesh-Ewald inte- Eelec= E"+E', @

gration in Sec. IV. Results are analyzed in Sec. V, and this i%vhere

followed by a brief conclusion section. Two appendices ana-

lyze resonance in impulse and extrapolation-based MTS

L
n 1 Tijn

schemes and demonstrate the close relationship among the Ed=§2 > ?_'_q’ erfo( Brij ), 3
leapfrog, position, and velocity Verlet variants. nobl T
and
Il. EWALD SUMMATION
. o . 1o ¢ 99
With periodic boundary conditions, the energy for elec- E'=§§n: |§;’ - erf(Brij n). (4)
) ij,n

trostatic interactions of a molecular system considers all
atom pairs over all possible lattice cells. We denote the trans- The inverse lengtls, a Gaussian-width parameter, alters

lation vectorn= (L, nyL, .nZL) relative to the primary cell the relative weights of thelirect (EY) andreciprocal (E")
(wheren,, n,, andn, are integers and is the cell dimen- - . .
. Y ; space contributions. For a gives, the real space term is
sion) and define the general distance vector between any pal . o S
. ) calculated only for atom pairs within a certain distance range
of atomsi andj as . ;
due to the fast decaying property of the erfc function. The

rjn=rij+n, wherer;=r;—r, reciprocal term is converted through Fourier transforms to
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1 ' . . 2m » s
E 252 .2;' qiquk: exp(2mik-rij ) E “[A+20v| 4 G| | 2 ari], ()
o erf( Bs) wheree is the dielectric constant of the medium surrounding
xf exp(—2mik-s) S ds the assembly of unit cells. Note that for conducting boundary
0 conditions,e is « andE° vanishes. Finally, an intramolecular
1/ 1 correction term is needed. This is because electrostatic inter-
= WE > qiqj[— > exp2mik-rij.n) actions for atom pairs connected via three bonds or less are
Lhon Tk#0 generally not considered in molecular dynamics programs
exp( — w2k?/ B?) = erf( Bs) (these atom pairs are collected in an exclusionlligt The
X 2 + S ds|, intramolecular exclusion ter&™ becomes
0
. . : erf(Brij)
where k is the reciprocal space wave vectork ( Enre= — (9)
=(L/ny,L/ny,L/n,)) andV is the total volume of the sys- hielo 1
tem. Forn=0 andi=j, we have The complete Ewald formula is given by
erf(ﬁri' n) Zﬁ Eelec: Ed+ Er — Ed+ EC_ Eself_ Eintra.
—— = pgerf(0)=—. . .
im0 Fijn J The advantage of decomposing the electrostatic energy as

) ) ) above is that the exponentially converging sum avandk
Thus, the term corresponding to=0 is removed to give for EY andEX in Egs.(3) and(6) allows the introduction of

1 (E )2 f erf( Bs) relatively small cutoffs(or effectively few wave vectojs
- i
|

E’=W without much loss of accuracy. Given re&y) and recipro-
n cal space K;) cutoff values, there exists an optim@lsuch

1 exp( — m2k?/ B2) that the accuracy of the approximated Ewald sum is suffi-

+ m; & & TQiqj ciently high®! This follows the requirement that the real and

reciprocal-space contributions to the error should be approxi-
B mately equaf’ Typically, 8 is chosen large enough so as to
xXexp2mik-rij ,)— —E qiz. employ the minimum image convention for the direct term
VT EY, and the overall complexity of the direct sum is thereby

AMBER) is generally used to further reduce the cost for direct

1 exp( — m2k?/ 3?) _ sunt? to O(N).

r:
E 27V T KZo k? i To produce an overalD(N log N) method, the particle-

mesh-Ewald methddapproximates the reciprocal sum using

. B 2 fast Fourier transforms with convolutions on a grid where
X exp(2mik-rij;)— \/—;Z ai, (5) charges and potentials are interpolated onto the grid points.

_ _ In addition, particle-mesh-Ewald does not interpolate but
whereV, is the volume of the primary cell; above, and the rather evaluates the forces analytically by differentiating the

sum overn was removed by using the identiy, exp(2rik  energies, thereby reducing memory requirements substan-
-n)/V=1N,. The first term in Eq(5) is called thek-space ftially.

sum (EX) and can be simplified by defining

S(k)=3 g exp(2mik-T,), lIl. DISTANCE BASED FORCE SPLITTING

' Multiple-time-step techniques rely on the fact that the

known in crystallography as thstructure factor.? It fol-  total force can be partitioned into distinct components which

lows that evolve (in time) on different time scales. The bond, angle,
20,27 52 and torsion terms in the force field can be associated with

v 1 exp(— 7k B%) ) . ; - ) X
E =5y 2 S(k)S(—k). (6) time scales according to their characteristic periods derived
TVok#0

from their harmonic potential forms. The nonbonded terms
The second term in the reciprocal siEg. (5)] is called the ~ (van der Waals and electrostatic interactioage not easily
self-energy related to any unique time scale_s. Still, assgnment to force
classes can be made by assuming that the time scale of the
wr B ) nonbonded force decays as;1/* It is thus generally suffi-
E :\/——EI qi - () cient to define spherical shells of increasing radii around a
m particle to subdivide the nonbonded contributions to the
Added also to the decomposition Bf,..into E¢ andE" in  force into terms characterized by different time scafes.

Eg. (2) is a dipole correction term E® depending on the To avoid discontinuous changes of force and energies,
dipole moment of the unit cell and the asymptotic order ofeach shell boundary is smoothed by a switch function which
summatiort® drops from 1 to 0 with a certaihealing length Such force
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assigned to the slow class. All other bonded terms are as-
signed to the fast class. At each update of the medium-class
force, the maximal particle movement is compared with a
threshold value £ 1 A); once the threshold is reached, the
nonbonded list is rebuilt. The buffer intervalc is in the
range of 0.5-1 A.

The complete three classes force breakup can be summa-
rized as follows:

S(r) and S’ (r)

Ffast: fbond"’ 1:angle+ ftorsionv

Fmed=7d +~f"’,

Distance r (A) Faon=1"

switched direct modified reciprocal

wheref?, ¢, andf" are the switch-regulated van der Waals,

\‘ direct, and reciprocal terms, respective(gee Fig. 2
\ Namely,

il J I ._\.&_

L

e . ~ 1 ! B:: A
B, a b ¢ c+Ad] a b fv _EE E S(rij,n,vl,vz)vr[l_lzl_s_”}y

N a<va Fijn Tijn

== oOriginal === original = = oOriginal

= switched — switched = switched d_ i
flf=—-= S(rii n,a,b)V, ,
. . . N . Zzurl%@o (Fin2.0) "Tijn
FIG. 2. The switch functioi®(r) (solid line) and its derivativeS’ (r) used in
our multiple-time-step schemégqg. (10) (Ref. 36]. Here a switch region fr= —VrEf,
between 3-7 A is used. The continuity of the first-order derivative is an
important requirement for switch functions. The application of the switch _ 1 ! aiq;
function to direct and reciprocal electrostatic interactions as well as van der  §f = f" 4+ _E 2 S(rii n,a,b)V. !
Waals interactions is shown, so as to produce the right plot in Fig. 1. 259 ) rij.n<Ro I Fij.n
qiq;
—vr—'erfc(ﬂrij,n)}
splitting schemes are widely used in multiple-time-step inte- Fij.n

grators fé)gs Eeoth Ewald-bastd*3** and truncation-based All force switches employ the following switch functidh

protocols® for the switch interva[rg, rq], shown in Fig. 2,
Most of the Ewald-based multiple-time-step methods .
split the direct space term into two or more distance classes 1 if r<ro,
while putting theintact reciprocal term into one of these S(r,ro,r) =1 x*(2x—3)+1 if ro<r<ry, (10
classes. Since the direct space interactions are typically trun- 0 if r=r,,

cated at a moderate valu8—10 A), the enhancement in ) _ )
computational speedup associated with spliting the rea{'nerex=(r—ro)/(r;—ro). Note, that in multiple-time-step
space sum is limited due to the overhead of extra pairlisEchemes, the total energy is typically computed at the outer
maintenancé® Moreover, since the Ewald reciprocal term is IMe step. ,
the sum of all erf-function-regulated pairwise electrostatic ~ OUr Separate treatment of van der Waals and electrostatic
interactions(including weight-reduced short-range interac_mtgractlons .allows the .electrostatlc interactions to be
tion term), the reciprocal force must be updated ofterg.,  SWitched off in the near fieldésmaller cutoff parameten),
every 4 f3 to conserve energy. If the reciprocal term can alsgWith a s_hlftmg of the remaining ele(_:trostgtlc computation to
be regulated so the near-field contributions are removedhe reciprocal spacesmaller Gaussian-width parametgy,

larger time steps for updating reciprocal interactions mightVithout sacrificing the accuracy of the van der Waals term
be achieved. (which usually has the same cutoff as the direct-space

In our improved version of force splitting for particle- termt®). The removal of near-field interactions from recipro-

mesh-Ewald, a nonbonded list upde- Ac is maintained for cal te_rm is expected to allow a larger outer time step for
the evaluation of the direct-space and van der Waals terrigPdating the slow force.
(see Figs. 1 and)2The van der Waals term is switched off
clectrostaic mieracions ess than  cutof dstinase iso |, MULTIPLETIME STEP INTEGRATORS

. . . FOR PARTICLE-MESH-EWALD
assigned to the medium class and smoothly switched off be-
tweena and b; the difference between this medium-class  To guide the development of efficient multiple-time-step
electrostatic contribution and the direct-space term is exactlprotocols, studies of very simple models, like the one-
the near-field contributions to be removed from thedimensional harmonic oscillatGr’ are instructive. Though
reciprocal-space terrgsee Figs. 1 and)2Thus, the recipro- not much discussed until now, the two Verlet variants, known
cal term with the near-field contributions removed can beas position verletPV) and velocity verletVV) (Refs. 38—
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40) offer different practical performance, though their error TABLE I. Position Verlet based impulse multiple-time-step schemes for
is the same in theory at the limit of infinitesimal time steps.NéWtonian(PV-MTS) and LangevinLANG-MTS) dynamics.

Both are reversibf& and symplectié! PV-MTS LANG.MTS
Consider Newton’s equation of motion for &hpatrticle X = xn Veyn X =x" ‘Z:)V"
- N Fiast = Fast(X
system, I;fazz_ T:sl(]ﬁ gx) Fied = Medil;m()X)
. rmed — Filow = Slow(X
MV =F(X)=—VE(X(t)) Fyow = Sow(X) VIV Fakibe
’ V=V+Fslowk1k2% P—0 slowR1/8275
where M is the mass matrixX and V are the collective ;’t =0 Lk Fori=1:k;
oy . . or 2 — H _ Ar
position and velocity vectors, and the dot superscripts denott V_V4iF kAT :— Y+1Fn;:dk17
. L . . me orj=1:
differentiation with respect to time The two Verlet schemes Forj=1:k A, T Y x 4 V%
are described 4% X=X+Vo- A2
AT SHAKE(X,V,—)
AT SHAKE(X, V, —) PP X2V
—_ = P
Vn+l/2:vn+_M an' P, — P, + getB(X, V) t % + getP(X, V)
2 P Fast(X Fruse = FAST(X)
+1 +1/12 v f_as;; ;-s ( A) R =rand(y, A7, kpT)
X=X+ A7V — Y e BT V = V(1 = yA7) + (Fas + R)AT
1 1 X=X+ VT X=X VAT
F'tl=—VE(X"*], A =X+Vo-
SHAKE(Xv‘/v _) AT
A 2 SHAKE(X, V, T)
Vn+1:Vn+1/2+ _TM*an+l End
' Frzea = Medium(X) End )
V=V + Fpeak:1 57 Fiyea = Medlum()g)r
for VV and End V =V + Freak1 47
Py = P/ (kiks) End
At scalX(X, P, Po, kiks A7) P, = Py/(kaks)
Xn+ 1/2_ XN+ _Vn, Fow = Slow(X) scalX(X, P, Po, k1k2AAT)
V=V+ FslowklkZ% F‘SIOW = Slow(X) A
xntl=x yntl_y V =V + Faowkik2 5F
Fn+l/2: _VE(Xr'Hrl/Z) xntl_ x vl
Vr‘l+1zvn+ ATM —1Fn+1/2
YN+1o yN+124 A_Tvn+1 candidate for Langevin dynamics. Furthermore, with Ber-

endsen’s thermostat and barostat coupffd, temperature
and pressure can be controlled to minflowt not reproduce

for PV. Here superscripta denote the discrete approxima- ", . . . .
P b bp rigorously) canonical, isothermal, and isobaric ensembles.

tion at timenA 7, whereAr is the time step.

For Newtonian dynamics, though VV-based impulse
mult!ple-ume-step schem&gre W'dely used, the PY has TABLE II. Position Verlet based extrapolation multiple-time-step schemes
stability advantages at large time stéP&oth Verlet variants  for Langevin dynamic€LN and LN2).
can be traced back to the leapfrog/VerleitBter

- 4 ; IN N2
schemé&**3-45 (see Appendix B For Langevin dynamics, ST E——
constant extrapolation is ideal for slow force evaluatitm X :FX"_ . VX: vt Fhast = Fast(X)
damp out resonancEs, both the midpoint and constant ex- Fff;; Miiiﬂ,mgx) I;med = Mediu;(X)
trapolation schemes with velocity corrections are good can-  Feiow = Slow(X) pjl‘l’o‘ Stowl)
didates for evaluation of the medium force. The LN multiple- i:f,r:ioz 1k Fori=1:k
time-step protocdP>® with midpoint and constant X* =X+ Vk AL Forg=1 f}+vg
extrapolation for the medium and slow-force evaluation, re- Line : :""l‘fi,‘:m(x*) A2
spectively, has proven to be effective for truncation-based T xCxyvAT SHAKE(X, V, =)
schemes:-%¢ A2 P, = P, +geth(X, V)

In our proposed multiple-time-step force splitting for sE(X. V. 5) Frast = Fast(X)
particle-mesh-Ewald, recall that the slow force is composed Pe= P getP(X,V) R = rand(y, A7, ksT)

. . . Flast = Fast(X) F = Frost + Finea + Faow + R

of the_ rec_|procal _term with the cancellation te_rm from the R = rand(v, Ar, knT) V = V(1 - 4A7) + FAr
near field interactions; the switched electrostaticandvande r_g .5  +Fr.+R P
Waals interactions are evaluated once for each medium-forci V = V(1 —vA7) + FAT =4tV
update. We have found that PV-based constant extrapolatio X —x+vAT snm(x,v,%)
with velocity correction is more effective than analogous VV Af End
schemegbased on resonance analysis of a 1D harmonic os: SHAKE(X, V, —- PO = Fg
cillator; details are provided in the Ph.D. thesis of Gfan End Freq =Mediun(X)
Therefore, the PV-based impulse multiple-time-step method  End Em‘i’:V*(F twed — Frnca )l 5
(PV-MTS, see Table)) is an optimal choice for Newtonian fg:}?)é(’;;tkﬁo k) P, = Py/(kiks)
dynamics; PV-based constant extrapolation with velocity 7., = stow(X) ;falefsvf tJ;g’ kikaA7)
correction for the medium force, along with constant ex- X™*'=X vt =v ot g OW(V2t+1:V
trapolation for the slow forcéLN2, see Table I, is a good
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For pressure coupling, the internal pressure obtained frorB. Multiple-time-step performance assessors
the molecular virial and kinetic energy is measured every
inner time step, but the scaling of box dimension and coor
dinates is performed once per outer time st scaling
factor is derived from the average internal pressurethis
way, the slow force evaluation can be performed after the 1
scaling operation to avoid approximation errors that can arise 7~ N_TZ'l
from multiple scaling in the inner cycle. For temperature _
coupling, in contrast, velocity scaling is performed at everywhere Ey, is the total energy at stepy Eg, is the initial
inner time step to ensure smooth motion. The scaling factognergy, andNy is the total number of sampling points. A
is re-evaluated every outer time step from the average kineti¢alue of 7=<0.003, i.e., logyn< —2.5, is considered accept-
energy over the multiple inner cycles. able in terms of numerical accuratyThis parameter can be
Both our mu|tip|e_time_step schemes for Newtonian and& gOOd indicator of energy conservation, if the simulation is
Langevin dynamics(PV-MTS and LN2, respectivelyare  performed long enough to reflect error accumulation. We
given in Tables | and Il with Berendsen’s pressure couplinghave found that simulations of length 400 ps or longer are
and SHAKE(Ref. 46 constraints applied; Berendsen’s tem- required to verify integrator stability. That is, small but sys-
perature Coup"ng for Newtonian dynamics is similar to pres.tematic drifts can take several hundred piCOSECOﬂdS to
sure coupling and omitted for simplicity. The original LN e€merge. Hence, multiple-time-step/particle-mesh-Ewald tests
multiple-time-step protocdt*?is also given for comparison based on several picosecor{ésy., as in Ref. 20are far too
(Table I). All symbols in these tables have their usual mean-short to demonstrate stability and accuracy, and reported
ing as defined above. In additioR, is the accumulated pres- speedups and accuracies of integrators may be misleading.
sure andP,, the reference pressure. Given an inner time step  Another trajectory assessment parameter is the energy
A, the medium force is updated evety inner time steps at conservation ratioR) defined by
At,,=k;Ar, and the slow force is recalculated evégyme- R=AE/AE,, (12)
dium cycles atAt=k,At,=k;k,A7. The symbolgetP in o
the code sketched is the pseudofunction that obtains the cuftn€réAE; andAE, are the RMS deviations of total energy
rent pressuréSHAKErepresents the SHAKE constrained dy- and klnetlc energy, respectively. The total energy is generally
namics operatidi? (applied to coordinates onlyandscalX considered well c_onserved_wh@s_0.0S_.so However, as
indicates coordinate rescaling in the pressure-control protd?oted by Procaccet al,'® this criterion is misleading for
col. Although it seems that VV schemes might save an extr§0Mparing multiple-time-step to single-time-step methods.
SHAKE evaluation(with respect to PV schemgshe latter N particular, well designed mqupIe-tlme—step integrators
can in fact be rearranged in a way to avoid two SHAKE ¢an compute structural and dynamlgal properties of t_he Sys-
evaluations per inner loofd. In practice, we find that the t€m more accurately than single-time-step simulations of
advantage of extrapolation-based MTS metfdis ruined ~ comparable and smallét V‘?"“ess-s _
by the cancellation error of Ewald methddgresults not A more direct indication of energy conservation for
shown); the alternative is to use impulse-based mu|tip|e_mu_It|pIe-t|meTstep methods is the relative energy drift ngte
time-step methods for Langevin dynamitANG-MTS, see which we define to be the slope of the least-squares best fit of
Table )) as well. We emphasize that with improved treatmentthe energy evolution over time to a strgight line. In the least
of the cancellation errainot yet available iravMBER6.0), itis ~ Sduare sens@enoted by=), we can write
likely extrapolative MTS methods will regain their advan- El

K
tage and the outer time step can be pushed yet further. e —t;+by, (13

E?ot ty

Two energy conservation parameters have been used in
the past as quality control for energy conservafiv?f:?®
One is the relative energy errég), given as

i 0
Eltot_ Etot

0
Etot

Nt
: (11)

wheret;=iAt at stepi, by is a parameter, ant|, is the
preferred time unit to make unitless. Ift, is in units of
A. Biomolecular systems picosecondsk gives the relative energy drift per picosecond.

Our three representative test cases are a water(4@x A small x value is a good indicator of energy conservation.

X 49x 49 A%) of 4096 molecule$12 288 total atoms a pro- For reference, .|Oﬁ)K values for the single-time-step leap-
tein (dihydrofolate reductagesolvated in a water box70 frog integrator iNAMBER are about— 6,'7' —6.4, and—6.3

x 60X 54 A3) with counterions(11 Na', 22930 total at- [0 A7=0.5, 1.0, and 2.0 fs, respectively.

oms; and a 14-base-pair DNA double helixXDNA:
GCTAAAAAAGGGCA) with counterions and solvent water
molecules(26 Na", 15320 total atomsin a box (71x50

x 43 A3).47 All systems are minimized for 1000 cycles using In addition to the regular parameters for the particle-
the steepest descent method followed by 5000 cycles of conmesh-Ewald setup, the multiple-time-step/particle-mesh-
jugate gradient. The three systems are heated to 300 K ov&wald integrators have several tunable variables. These are
10 ps, with SHAKE(Ref. 46 constraints on all bonds in- the inner time stefA7), medium and slow force update fre-
volving hydrogen, and equilibrated for 18 ps by the originalquenciesk; andk,), and the switch-interval parameters for
leapfrog integrator imMBER6.0 (Ref. 21) with a 9 A direct  electrostatiqa andb) and van der Waal& ; andv,) inter-
space cutoff distance and a time step of 1 fs. actions. Since force switching aims to maintain good energy

V. NUMERICAL EXPERIMENTS

C. Time step and switch function parameters
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FIG. 5. Lower bound fory for extrapolation and impulse multiple-time-step

-5.9 'i é 3' A 0 methods as a function of the slow to fast period ratio, as calculated in
Healing Length ( & ) Appe_nd_ix A _The fast periodT; =11 fs_) roughly corresponds to the char-
acteristic period of C—H bond stretching.

FIG. 3. Energy conservation for different healing lengths as evaluated by
200 ps dynamics simulations for our solvated protein system. The solid line
with error bars is the total energy and its standard deviateale at left  For guter time steps of 6 fs or larger, a healing length of 3 A

vertical axi9. The dashed line is the conservation rafi@ /A&, With o e for hoth the electrostatic and van der Waals interac-
scale at right vertical axisthe fluctuation of total energy divided by the . X
fluctuation of total kinetic energlEq. (12)]. tions is necessary to suppress the energy @i. 3. Imple-
mentation of multiple-time-step integrators without force
switches(e.qg., step function used in Ref. 28uffer from this
conservation for multiple-time-step integrators, the width of
the switch region(the “healing length” isb—a) influences
energy conservation and must be chosen with care. For
Langevin dynamics, the damping constantan also be ad-
justed to control the coupling strength. This is because the
use of Langevin dynamics is numerical, to damp
instabilities®® rather than physicdf A variety of numerical
tests are performed on three test cases to define the accept-
able parameter regions and optimal parameter sets for differ-
ent molecular dynamics protocolsee below.

DNA/Newtonian-

Outer Timestep [fs]

D. Results on appropriate buffer lengths Protein/Newtonian.

Simulations with the multiple-time-step protocol of 1/2/6
fs, for fast/medium/slow force partitioning were performed
for the solvated protein for 200 ps to determine an appropri-
ate switch buffer length. The electrostatic force in the me-
dium class is switched off frora=5 A to b and the van der
Waals force fromw;=6 A to v,. The healing lengttb—a
=v,—v,; was varied from 1 to 4 A. For an outer time step 4
fs or less, we find that the total energy is not sensitive to the
healing length or the switch functior(sesults not shown

Outer Timestep [fs]

em
Energy [keal/mol] 2
Protein/Langevin

. )
10° =4
0310 4 E
12
) 2 54
=3 T ] t
° 23 s |
£-05| ¢ £ = ol
E : gz Bon A > > S 17
- [] ! g >
8 _q .‘.Ea Vd .
s
a1 T
u & Energy kealimol] o0 2 Outer Timestep [fs]
4
_1'50 200 400 600 800 0 2 4 6 8 10 FIG. 6. The deviation of energy components relative to the reference trajec-
Time (fs) Frequency (fs™')  y 107 tories for impulse multiple-time-step Newtonian and Langevin integrators

for solvated systems. All simulations have an inner time step of 0.5 fs and a
FIG. 4. Characteristic periods for the cancellation term for particle-mesh-medium time step of 1 fs. Newtonian multiple-time-step simulations with
Ewald in AMBERe.0. Left: electrostatic energies of the single water molecule 0.5/1/2 fs protocols are used as referer(Tais reference is used rather than
system(Ref. 17 calculated from the single-time-step metheehpfrog Ver- a single-time-step scheme to mimic the same switch applied to the van der
let, A7=0.5f9 and MTS methodposition Verlet,A7=0.5fs, k;=2 and Waals force; similar results are obtained for comparisons without a van der
k,=2). Right: the Fourier transform of the autocorrelation function of elec- Waals switch and will be reported by Barash and Schliél. simulations
trostatic energy. Two periods are captuf@d0 and 200 fs are 5 ps in length.
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FIG. 7. Spectral densities of solvated DN#p) and protein(bottom) sys-
tems (derived from all solute atomsfor various protocols. For protocol
details, see Sec. VE.

outer time step barrier. Based on our experiments, we choo
the buffer length to be 3ro4 A in our preferred multiple-
time-step/particle-mesh-Ewald protocols.

E. Limits for outer time step

Procacciet all’ revealed a characteristic period associ-

X. Qian and T. Schlick

=O- DNA
+#: protein
[| = = theoretical

Speedup

vdw: 6-10 A

1/2/4  05/2/8 1/2/8 1/3/6 1/3112,y 0.8/3.2/16,y

MTS Protocols

0.5/1/4 0.5/2/4

FIG. 8. Speedup for different multiple-time-step protocdisted in the
horizontal axi$ relative to the single-time-step method for three sets of
electrostatic/van der Waals switches. The damping constapt@ ps ! is

used in the two Langevin simulations reported. The dashed line represents
the analytical speedup estimate assuming the same nonbonded list size and
direct-space cutoff for both multiple and single-time-step mettieds Eq.

(14)]. The base-line single-time-step simulation has a nonbonded list of 10
A and a 9 Adirect-space cutoff. All simulations are 1 ps in length.

vin dynamics protocols with a propercan suppress the first
resonance spike near half of the fast period. The periodic
slow force also enforces a lower bound fpof about 5 ps*

to suppress the first resonance spikee Fig. 5 and Appen-
dix A).

To find the largest outer time step applicable for our
impulse multiple-time-step integrators for both Newtonian
and Langevin dynamics, we varied the outer time step from 1
to 20 fs, with fixed inner time step)(r= 0.5 fs) and medium
force update frequencik, =2, that isAt,,=1fs). The elec-
trostatic force in the medium class is switched off from 5 to
9 A, and the van der Waals force is similarly treated from 6
to 10 A. A nonbonded-interaction list over 10 A is main-
Jained wih a 1 A bufferregion aml a 9 Adirect space cutoff.

KH simulations are performed for 5 pshort simulations
(The candidates that will be produced for optimized proto-
cols will be studied for longer simulations to verify stability
and accuracy.Both the DNA and protein test cases are ex-
amined. Both show an upper bound of outer time step near 8
fs (Fig. 6) for Newtonian dynamics and 16 fs for Langevin

ated with the cancellation error of Ewald methods. This errodynamics(Fig. 6). This indicates that these limits are system

arises from the truncatioftlue to the discrete summatioat
some cutoff wave vector valuk, and removal of the erf-
weighted electrostatic interactioris.g., intramolecular ex-
cluded interactions from the reciprocal-space term. The
simple system devised in Ref. 13ingle water molecule in a
cubic box with side length of 64 Ayields a total electro-

independent(Longer simulations with an outer time step
larger than 8 fs exhibit notable energy drifts soon after 20 ps;
results not shown.

To guarantee that these multiple-time-step implementa-
tions do indeed generate the correct dynamics, the spectral
density plots from multiple and single-time-step methods are

static energy that corresponds exactly to the cancellation ecompared in Fig. 7. All simulations for these analyses are

ror. The cancellation errors from Proca&tial. show a pe-
riod of the order 10-20 fs.

The instability of the cancellation errors can be sup
pressed if a proposed correction term is includielit this is
not implemented inAMBER6.0. We found that the PME
implementation inAMBER6.0 (Ref. 51) shows similar behav-

based on 9.6 ps trajectories with velocities of solute atoms
recorded every 2 fs. All bonds involving hydrogens are con-

-strained with SHAKE. A time step of 0.5 fs is used for the

reference single-time-step method and 1/2/4 fs for multiple-
time-step. Our figure denotes the multiple-time-step protocol
by A7/At,, /At for Newtonian dynamics and 7/At,,/At,y

ior for the correction term, with two characteristic periods onfor Langevin dynamics. The damping paramejet5 ps *

the order of 110 and 200 §ig. 4). This imposes an upper
bound on the outer time stgfhe linear stability limit is the
period overs (Ref. 39] of 35 fs and of 25 f§period over

V27 (Refs. 15,4%] to avoid fourth-order resonance. Lange-

is used for Langevin dynamics.

Figure 7 demonstrates that our multiple-time-step imple-
mentations give similar spectral density distributions relative
to single-time-step methods for Newtonian dynamics, with
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TABLE Ill. Results of long multiple-time-step simulations for stability and accuracy analysis.

System [ ID | Switchf(&) MTS? t (ps) | AEiot/AEy (kcal/mol) | T/AT (K) R logio7 | logiox comment
01]9 0.5 200 —45426.16/ 0.76 297.55/1.93 | 0.013 | —4.72 —6.72 reference
a | 5-9/6-10 1/2/8 400 —45779.10/ 32.31 208.50/1.81 [ 057 | —3.25 | —5.04 good
solvated b | 3-7/4-8 1/2/8 400 —46252.81/ 28.37 298.93/1.95 0.46 —-3.30 —4.40 unstable
DNA c| 3-7/4-8 1/3/6 400 —46234.83/ 13.07 299.01/1.91 | 0.21 | —3.60 | —5.30 good
d [ 37/48 0.8/3.2/16(5) | 400 | —45614.65/131.22 | 305.98/2.46 | 1.71 | —2.65 | —5.07 good
e[ 3-7/6-10 0.8/3.2/16(5) 500 —45714.33/134.49 307.87/254 | 1.70 | —2.62 | —5.24 good
T]59/6-10 1/3/12(5) 100 —45341.20/128.46 304.62/2.20 | 1.87 | —2.64 | —5.09 good
019 0.5 200 —57747.81/ 0.88 208.62/1.56 | 0.012 | —5.05 —7.02 reference
a | 5-9/6-10 1/2/8 800 —58246.78/ 41.36 300.2L/1.47 | 0.60 | —3.40 [ —4.99 good
b |37/48 1/2/8 400 —58996.54/ 35.96 300.26/1.59 0.48 —-3.29 —4.40 unstable
solvated c| 3-7/4-8 1/3/6 400 —58963.60/ 16.03 300.61/1.56 | 0.21 | —8.66 | —5.32 | best Newtonian
protein | d | 3-7/4-8 0.8/3.2/16(5) | 400 | —58059.49/160.14 | 307.47/2.03 | 1.68 | —2.65 | —5.01 zood
g | 5-9/6-10 1/2/4 400 —58394.18/ 23.12 208.87/154 | 032 [ —350 | —6.32 excellent
h | 5-9/6-10 1/2/4 NPT 1200 —58209.20/ 46.96 300.00/1.51 0.66 —-3.19 —6.05 excellent
i 5-9/6-10 0.8/3.2/16(5) 400 —57716.25/167.70 305.82/1.75 2.04 —2.64 —5.20 good
j| 3-7/6-10 1/3/6 400 —59357.42/ 32.63 300.45/150 | 020 [ -3.70 | —6.60 excellent
k| 3-7/4-8 1/3/6/NVT® 400 —59039.15/ 45.01 300.09/154 | 062 | —3.21 | —6.12 excellent
water 1| 5-8/6-10 1/2/8 400 —32579.26/ 32.60 208.13/2.12 0.63 —-3.20 —4.99 good

Switches are given for the electrostatic potential followed by van der Waals parameters.

Timesteps are given in the form of At/At,,/At in fs followed by -y for Langevin dynamics in the unit of ps~1.
isothermal isobaric simulations.

constant temperature simulations.

w0 % kb =t

comparable quality. The Langevin multiple-time-step simu-for Newtonian dynamics is 1/3/6 fs with a switch for elec-
lations produce peaks at the same wave numbers with lowerostatic interaction from 3ot 7 A and a switch for van der
magnitudes due to the stochasticity, as expected. Waals interactions from 4 to 8 A. A speedup factor of 6.5 is
achieved relative to 0.5 fs single-time-step simulations. For
Langevin dynamics, the optimized protocol has the time-step
_ o combination 0.8/3.2/16 fs fory=5ps ! with the same
For a given multiple-time-step protocol\¢/Aty,/At),  gyjitches mentioned above. The speedup factor is 7.5 for
the electrostatic and van der Waals interactions in the metangevin dynamics. Of course, larggrvalues can be used

dium cIas; are _evaluated from the noannded atom pairlist % push up the Langevin outer time step further and hence the
each medium time step with a computational cosCgfper speedup

update. During the slow force update at each outer time step, Simulations of length 400 ps or longer were then per-

the nor_lbonded atom pairlist |s_accessed again to obtain tr1‘%rmed for different protocols to verify their long time sta-
correction term for electrostatic force. Assuming that the, . .. . . .
ilities (Table IIl). All simulations in Table Il are stable,

nonbonded computation dominates in total computational . . . . . .
. P . P with no notable energy drifts during the simulation, with the
cost, andb is close toc+Ac, evaluating the slow force

requires close t&C,, work. For an outer time stept, the excep_tion of _protocqb for Newtonian dynamics, W_hich has
total CPU costs are thus approximatek, ¢ 1)C,,. For a near field switch regionsh=8 A) and larger outer time step
single-time-step method with a reference time siep, the (At=8fs). ) , , )

total computational cost to cover an interval of lengthis _ For reference, single-time-step simulations of 200 ps
Cy (At/A 7o) =k;k,C, (A7/A 7). Thus, an analytical esti- with a tlme_ step of 0.5 fs for_our protein or DNA systems
mate for the limiting multiple-time-step speedup is givenhave the drift ratec~2x10"", i.e., logox~ —6.7 (protocol

F. Optimized protocols

from these two estimates as 0, Table II. In our study, we found that values af<3
x107°, i.e., logok<—4.5 for multiple-time-step integra-
Kikz AT) (14) tors, indicate good energy conservatidable Ill). The best
kp+1\A7g) protocol for Newtonian dynamics also has the best energy

We can see from Fig. 8 that the maximal achievable speedufPnservation rati® (R=0.21). Systematically, all Langevin
is quite modest. A slight improvement can be made by moySimulations yield largeR values (about 1.7 as expected
ing the switch region of the electrostatic interactions into theffom the stochastic formulation.
near field, which reduces the nonbonded list maintenance For Langevin dynamics, botR and logo 7 values are
time for the electrostatic force update. Greater speedups cdlPt good indicators of energy conservation; thedogval-
also be achieved by reducing the nonbonded list furtheHe€s seem more proper for stability assessment.
through moving the switch region of van der Waals interac-  Figure 9 shows the energy evolution of the DNA system
tions into the near field® Short simulations of length 1 ps for With an 8 A cutoff (protocols b, ¢, and)d While Langevin
our DNA and protein systems were performed for a varietydynamics exhibits intrinsically larger energy fluctuations
of MTS protocols to experiment with associated parametethan Newtonian dynamics, both protocols ¢ and d have
sets. very low relative energy drift rateslog,ox=—5.30 and
Figure 8 shows that the speedup of each protocol is in—5.07, respectively The Newtonian dynamics trajectories
dependent of the system size and content. The best protocat 8 fs with 8 A cutoffs(protocol B have noticeable energy
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FIG. 9. Energy evolution for the solvated DNA system with a 3—7 A switch FIG. 10. Pressure histogram of the solvated protein over the last 800 ps for
for electrostatic force and a 4—8 A switch for van der Waals force. All a 1.2 ns simulation with the multiple-time-step protocol 1/2/4 fs. The verti-
simulations are 400 ps in length. cal line in the center indicates the external presslirbay.

drift rate (logox=—4.4), about four times larger than VI. CONCLUSIONS
protocol d.

At the time of our writing this manuscript, a preprint We have developed efficient and versatile multiple-time-

communicated to us by the authors Zt 129 pointed out step/particle-mesh-Ewald protocols based on a smooth

the same problem of fast components presented in reciproc?YVitCh function 1o regulate direct anq reciprocql—space Ewalld
term of Ewald methods. Their very similar solution uses acrms so tha_lt the fast component in the reqprocal term is
step function rather than a smooth function to remove thégmoved. This approach yields '".‘pro"ed stability for the me-
fast component from reciprocal term. In our study, we findd'um force, and thus large outer time steps can be used. Long

that the medium force stability can be improved by a SmoothS|muIat|ons, as done here, are essential to demonstrate this

switch function. Though switch functions are used forStab”'ty; shorter tests, as reportétimay not represent be-

smooth transition of different force classes, the unaddress raawor accurately. We also use separate switch functions to

problem of sudden truncation resulting from the step fun(ft1and|e the van der Waals interactions so that the direct force

tion formulation will probably restrict the largest medium associated with the electrostatic interactions can be further

time step applicable and introduce energy drift for long du-@g;fseqr;tgngggscoan;p(;gr:;s'.';ng}e 1zzcclunraacg d'(t)'];r:/atg t?]?;
ration simulations. Indeed, the simulation length of 1 ps ! lons, ! B ' !
(Ref. 20 is much too short to assess multiple-time-step/

particle-mesh-Ewald integration stability.

DNA:1/2/4 fs

6 . & Protein:0.5 fs
G. Temperature and pressure controls .4 - Protein:1/2/4 fs

Our protocols for thermostat and barostat coupling with 3
multiple-time-step integrators are verified by a 1.2 ns simu-
lation for the solvated proteitprotocol h. The pressure his- §'4‘
togram for the last 800 ps of the simulation shows an average§
internal pressure of 0.99 bar and a root-mean square devie® 3|
tion of 176.61 barFig. 10.

H. Parallel scalability 1w ]

The parallel scalability of our current multiple-time-step , , j ,
implementations is explored by experimenting from 1 to 8 1 2 3 4 5 6 7 8
processors of an SGI Origin3000 computer. Again we see No. of CPU
performance that is independent of the system size. The MTSIG. 11. Parallel scalability for multiple-time-step integrators. All simula-
implementation has the same scalability as the originafions are performed on an SGI Origin3000 computer. Speedups are given as

single—time-step method up to 8 processors which is the beéﬁe ratio of computational timegexcluding setup timesreported byam-
! BERG.0 relative to single processor results. The multiple-time-step simula-

expected given j[he extra bookkeeping work in multiple-time-gns use protocol g in Table I1l. A 0.5 fs time step and a 5—-9 A cutoff range
step protocols{Flg. 11). are used for single-time-step simulations. All simulations are 1 ps in length.
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improvement over our prior implementatidhextensions to  The eigenvalues will approach the real axis and eventually

constant temperature and pressure simulations have bebecome a real pair for some outer time stk The reso-

implemented. nance spikes correspond to the extremes of the two real ei-
For Newtonian dynamics, our optimized proto¢di3/6  genvalues,

fs with a 3—7 A switch for electrostatics and 4—8 A switch x x

for van der Waals forcegjields a speedup of 6.5 relative to 10 or =2=0.

0.5 fs single-time-step simulations; for Langevin dynamics, ok ok

the optimized protocof0.8/3.2/16 fs withy=5ps™*) has a  The above two equations can be simplified to give a general

speedup factor of 7.5. These values are very close to o4prmula from which the resonance spikes can be obtained,
estimated maximal achievable speedup vallég. 11). The STr\ [ 3 det
5]

. (A1

" g det|? aTr\?
stability and accuracy of temperature and pressure control (_) e<—> _ r(— o
within our multiple-time-step implementations are verified dk ok ok |\ ok
with long simulations. These program segments are now iNafier algebraic manipulation®,we obtain the eigenvalues at
cluded in a test version OtﬁMB'ER and are expecteq t(_) be [esonance spikes as
released with futuremMBER versiong Barash and Schlickn
preparatioh. [ [knar\? kAr

Further speedup improvements can be achieved by ad- €X(— kA 7/2) 1+ 2\/)\—) * v
dressing the problem of large cancellation errors in the ! 1
particle-mesh-Ewald approath, using alternative core where the damping constant has a nonzero value for
functions$? (that better separate fast and slow interactiondangevin dynamics or zero for Newtonian dynamics. For
and/or push period of numerical cancellation term futher stability, y must be large enough to keep the first spike
resorting to alternative fast electrostatics methods like mul{kA r=~T;/2) below one. This leads to the following lower
tigrid or finite-element approache,or applying particle- bounds for numerical stability:
mesh-Ewald-type methods to van der Waals terms to further
. 4 Nom Ao
reduce the nonbonded pairlist. >—In(—+ A /1+<T) )
1
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APPENDIX A: LINEAR RESONANCE FOR IMPULSE Results are shown in Fig. 5 as a functionTof/ T,, with
AND EXTRAPOLATION-MULTIPLE-TIME-STEP T;=11 fs to mimic biomolecular systems. The correspond-
METHODS AND ESTIMATE OF THRESHOLD y ing \; values fori =1,2 aré>* ;= (27/T;)?.

FOR LANGEVIN DYNAMICS

Following the same notation as Sandu and ScHffake
can develop a more accurate estimate of the resonant spik8§PENDIX B: EQUIVALENCE OF LEAPFROG,

in the impulse splitting scheme by analyzing a simple two-YELOCITY, AND POSITION VERLET VARIANTS

class linear system with two force constahis>),, where Leapfrog, velocity, and position Verlet are all derived
X=V andV=—(\;+\;)X. The force associated witty is  from the original discretization formula for advancing posi-

updated every inner time stepr and the force associated tjons adopted by Verlét and attributed to Stoner?®
with N\, is recalculated at every outer time stéphich is

kA7 for some integerk). The impulse-multiple-time-step X(t+A7)=2X(t+A7) = X(t=A7) +F(X(1)(A7)%
force splitting for VV gives a propagator matri, as de-  The so-called half-step leapfrditf*scheme was proposed to

fined in the original paper. For most values ok, Ay, will - remove numerical roundoff errors resulting from the second-
have a pair of complex conjugate eigenvalugg as solu-  order term O((A7)?), as well as to give velocity
tions of the equation, informatior?* (Table 1V). There is a half-time-step offset be-

tween position and velocity updatélsence the name leap-
frog). Here we show that they are all equivalent: different
of the propagator, respectively. The solutions have the fornPosition Verlet. . _
(we drop the arguments for trace and determinant for sim-  In the original version of the leapfrog scheme, velocity

x2—=Tr(Ap)x+det(Ay) =0,

plicity), updates lead each cycle of propagation, so we can call the
scheme thevelocity-lead leapfrogV-Leap). It is also pos-
x1,2=%(Tri JTr?—4 deb. sible to write the leapfrog scheme with position updates
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TABLE V. Original and modified versions of the velocity-ledd-Leap)

and position-lead leapfroP-Leap Verlet schemes as described in Appen- 3

dix B. In the modified version of V-LeapX;,V;) has the same propagation

formulas as X,V) in the original version. The output of is delayed one 2

time step through th&; and velocityV is interpolated between two half-
time-step updates; this removes the half-time-step offset between position 4
and velocity outputs.

X. Qian and T. Schlick

Leap/VV/PV, AT = 0.1

2
Original V-Leap Modified V-Leap 8 of
X0 =X, X0 = X, 3
FO = _VE(X%) FY = _VE(X?) il
Vo=V, - &rM~1F° V2 =V,- &M 1F°
Forn=0: NSTEP -1 Forn=0: NSTEP
Vit =y ArMUET VP = VP ATMTIFT (a) 2
X" = _IXZ‘ ot (b) Leap/VV, AT = 0.8
vr =LV + Y, c -af
Xntl = xn + ATV" Xth»l 2:();;;-: AtTVtZ.H ((d; PV, AT =038
Pl = _VE(X™H) Fvl = _VE(X[) (®) ®? 7 pegion 2 °
End End
Original P-Leap Modified P-Leap
V=Y, V=0 b '
X0 =X, - 470 X9 = Xo - 47V 4'!1‘;\ i W
Forn=0: NSTEP -1 For n=0: NSTEP —_ \;rww W
Xl = X" ArVn XpH = Xp 4 ATVR < | L
Frtl = _VE(X™) Frtl = _VE(XP) 3.5}
X" = 3(Xp + XI) g
V" = th ‘a’,
Vvl =V 4 ArM LR Vet = v+ ArM it 8 3l — Leap
End End - - VvV
------ PV
0 1 2 3 4

leading the propagation; we call this variant fiasition-lead
leapfrog (P-Leap. With extra storage for velocities and po-

Time (ps)

FIG. 12. Comparison of different Verlet schem@sapfrog, VV, and PY.

sitions at different time steps, the_ original leapfrog SChem?Top) linear test case: phase space distributions of a harmonic oscillator. The
(V-Leap, see Table IYcan be rewritten to remove the half- oscillator has unit mass and unit force constant with an initial position

time-step offset. In the modified version, the position/displacement of 3. For a small time-step#=0.1), all three Verlet variants

velocity pair{X;, V} have the same propagation formulas as
{X,V} in the original version. The superscripts in Table IV

generate the correct ensemble as expected from analytical solthiok
middle ring; at larger time step ofA7=0.8, leapfrog and VV give an
ensemble with underscaled velociyanermost ring, while PV overscales

indicate the time intervals from a given initial condition the velocity(outermost ring (Bottom) nonlinear test case: end-to-end dis-

{Xo0,Vo}.

Introducing a force operatorK, where K(X)
=—M"IVE(X), Egs.(a), (b), and(c) in Table IV can be
written in matrix form as

tance betwee; andC,, of the side chain of lysine fra a 4 ps sirlation

with 0.5 fs time step of a single lysine in a large box ¥@4x 64 A%). Al
simulations start from the same initial condition. VV and leapfrog yield
almost the same trajectory for the first 4 ps, then diverge due to accumulated
errors. PV deviates from leapfrog and VV after about 0.6 ps.

X AT X
Vn - 71K V? ]
. Combining Egs(B1) and(B2), the propagation matrix from
Xi| o A7 X" n\/n n+1y/n+1
or I v -3 (B1) (X" VM to (X"TH, V") can be expressed as
Vi 2 v +1
~ R X" (AT L\ [XT
whereV (A 7,K) is the velocity propagation operator, ynti =V 71K V{Hl
I O n
Y S ~[AT .\ ~ D
Vark=| o =v(7,K)x<AT>V(AT,K> Vj
Here,| is the identity matrix and® is the zero matrix. It is AT L\ _{Ar _\[xn
clear thatV(t;,K)V(t,,K)=V(t;+1,,K), andV(0K)=I. =V(7,K X(AT)V T’K){V” :

Similarly, for Egs.(a) and(d) in Table IV, we have

n+1

t
n+1
Vt

n

=X(A7)| ynt1
t

=X(A7T)V(ATK) (B2)

X;
Ak

This is exactly the same propagator for the VV scheme, and
this identity implies that the leapfrog and VV schemes pro-

duce identical trajectories for the same initial condition

{Xp,Vg} in exact arithmetic.

Similarly, it can be shown that the position-lead leapfrog

(P-Leap, see Table IMs equivalent to position VerléY. In

whereX (A7) is the position propagation operator,

I At

>~<(AT)={O |

practice, the numerical roundoff errors will cause trajectories
to diverge after a certain simulation length. Figure 12 shows
their similarity for trajectories of a harmonic oscillator as
well as a protein model.
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