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Efficient multiple-time-step integrators with distance-based force splitting
for particle-mesh-Ewald molecular dynamics simulations

Xiaoliang Qian and Tamar Schlicka)

Department of Chemistry and Courant Institute of Mathematical Sciences, New York University,
and Howard Hughes Medical Institute, New York, New York 10012

~Received 3 October 2001; accepted 16 January 2002!

We develop an efficient multiple-time-step force splitting scheme for particle-mesh-Ewald
molecular dynamics simulations. Our method exploits smooth switch functions effectively to
regulate direct and reciprocal space terms for the electrostatic interactions. The reciprocal term with
the near field contributions removed is assigned to the slow class; the van der Waals and regulated
particle-mesh-Ewald direct-space terms, each associated with a tailored switch function, are
assigned to the medium class. All other bonded terms are assigned to the fast class. This versatile
protocol yields good stability and accuracy for Newtonian algorithms, with temperature and
pressure coupling, as well as for Langevin dynamics. Since the van der Waals interactions need not
be cut at short distances to achieve moderate speedup, this integrator represents an enhancement of
our prior multiple-time-step implementation for microcanonical ensembles. Our work also tests
more rigorously the stability of such splitting schemes, in combination with switching methodology.
Performance of the algorithms is optimized and tested on liquid water, solvated DNA, and solvated
protein systems over 400 ps or longer simulations. With a 6 fs outer time step, we find
computational speedup ratios of over 6.5 for Newtonian dynamics, compared with 0.5 fs
single-time-step simulations. With modest Langevin damping, an outer time step of up to 16 fs can
be used with a speedup ratio of 7.5. Theoretical analyses in our appendices produce guidelines for
choosing the Langevin damping constant and show the close relationship among the leapfrog Verlet,
velocity Verlet, and position Verlet variants. ©2002 American Institute of Physics.
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I. INTRODUCTION

The large-scale size of biomolecular simulations coup
with the growing demand for higher accuracy and physi
relevance underscores the importance of developing m
efficient and accurate simulation methods.1 The Ewald
summation method2 is a well-established technique fo
computing electrostatic interactions accurately under p
odic boundary conditions. Truncating the nonbonded in
actions3,4 is generally no longer considered competitive. T
particle-mesh-Ewald~PME! method5 is a promising variant
derived from the standard Ewald method. The electrost
interactions in particle-mesh-Ewald method are evaluate
a manner similar to that in the Ewald method, with real~or
direct!, reciprocal, and correction terms. Particle-mes
Ewald algorithms approximate the reciprocal compon
through fast Fourier transform techniques, following smo
charge and potential interpolation on a grid. This effectiv
reduces the computational cost for the nonbonded te
from orderO(N2) to O(N logN).6 Still, the computational
cost is high in biomolecular simulations due to both the la
size of biomolecular systems and the large therma
accessible conformational space needed to be sample
addition to faster computing platforms and paral
adaptations,7,8 multiple-time-step methods have been adap
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for molecular dynamics algorithms to reduce the over
computing time by performing electrostatic calculations le
often than other energy and force components~e.g., Refs. 9,
10!.

Most of the multiple-time-step methods for Ewald sum
mations split the direct-space sum into two or more distan
based medium or slow classes while putting the intact re
rocal term into one of these classes.11–13 Truncation-based
multiple-time-step methods for periodic domains tend
achieve a larger outer time step than those based on
Ewald summation@e.g., the LN method~Refs. 14, 15! in
CHARMM ~Ref. 16!#. A numerical problem of particle-
mesh-Ewald methods is that the finite number of wave v
tors in the discrete approximation is thought to give rise
truncation and cancellation errors~due to the exclusion of
intramolecular interactions!.17 This numerical feature re
stricts the largest timestep used for updating the recipro
term, and hence the speedup that can be achieved
multiple-time-step/particle-mesh-Ewald methods. The m
problem leading to this limitation is the association of t
entire reciprocal term to a certain multiple-time-step cla
Since the reciprocal term is the sum of all error functio
~erf! of pairwise electrostatic interactions, it includes weigh
reduced short-range interactions as well. Figure 1 shows
the direct component has a ‘‘tail’’~slow terms! while the
reciprocal component has a ‘‘head’’~fast components!. In
practice, work has shown that the corresponding recipro

52;
1 © 2002 American Institute of Physics
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FIG. 1. Schematic illustration of the application of th
improved force splitting scheme for PME applied to
pair of atoms with chargesq1 andq2 of opposite sign,
separated by interparticle distancer . The force switch
function used is given in Eq.~10! ~see Fig. 2!. All
forces are expressed by their magnitudes for simplic
The componentsf r , f d, and f v correspond to the origi-
nal forces~left, see text!, and Fmed and Fslow are the
final medium and slow forces, respectively~right!. Fmed

includes the modified direct space term without a ‘‘tai
~switched off betweena and b! and the modified van
der Waals term~switched betweenv1 and v2!; Fslow

includes only the modified reciprocal term without
‘‘head.’’ The valuec is the direct space truncation dis
tance used in PME to derive default value of the Gau
ian parameterb, andc1Dc defines the size of the non
bonded pairlist.
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force must be updated at most every 4 fs to conse
energy.11,18

Here we present a new distance based splitting sch
to rearrange the direct and reciprocal sums so that the n
field contribution to the reciprocal term is removed. Th
work represents an enhancement of our prior implementa
for microcanonical ensembles19 ~which simply uses the re
ciprocal term for the slow force! since the van der Waal
interactions need not be cut at short distances to ach
moderate speedup. We also test more rigorously the stab
of such splitting schemes as well as switching methodol
than a recent report,20 whose short test simulations may n
be representative.

Specifically, we present both Newtonian and Lange
multiple-time-step/particle-mesh-Ewald integrators, dev
oped for the programAMBER,21 with extensions to canonica
isothermal and isobaric-like ensembles as implemented
AMBER ~based on Berendsen’s weak coupling schemes22,23!.
The combined approach is found to be stable and accu
for outer time steps of 8 fs~Newtonian! and 16 fs~Langevin,
with mild damping!. Speedup factors approach 7 and 8
Newtonian and Langevin, respectively, relative to sing
time-step integrators at 0.5 fs for particle-mesh-Ewald pro
cols. Following a brief introduction to the Ewald method
Sec. II, we discuss distance-based force splitting in Sec
and present the multiple-time-step/particle-mesh-Ewald in
gration in Sec. IV. Results are analyzed in Sec. V, and thi
followed by a brief conclusion section. Two appendices a
lyze resonance in impulse and extrapolation-based M
schemes and demonstrate the close relationship among
leapfrog, position, and velocity Verlet variants.

II. EWALD SUMMATION

With periodic boundary conditions, the energy for ele
trostatic interactions of a molecular system considers
atom pairs over all possible lattice cells. We denote the tra
lation vectorn5(nxL, nyL, nzL) relative to the primary cell
~wherenx , ny , andnz are integers andL is the cell dimen-
sion! and define the general distance vector between any
of atomsi and j as

r i j ,n5r i j 1n, where r i j 5r j2r i ,
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and r j and r i are vector coordinates in the primary cell. W
use ~nonbold! r i j ,n to denote the scalar magnitude ofr i j ,n .
The total electrostatic energy is then expressed as

Eelec5
1

2 (
n

(
i , j

8 qiqj

r i j ,n
, ~1!

where the prime in the summation indicates that thei 5 j
interaction forn50 is not counted. The summation overi , j
pairs in Eq.~1! extends over allN atoms in the system (i , j
51,...,N) with partial charges$qi%. The slowly-decaying
nature of this long-range potential renders a straightforw
summation impractical. Ewald, multipole, and other metho
have been developed to remedy this problem.24–28 The
Ewald summation2 effectively splits the task of evaluatin
Eq. ~1! into two parts using a pair of complementary fun
tions erf(x) and erfc(x)512erf(x), where

erf~x!5
2

Ap
E

0

x

e2t2dt.

For a detailed theory of Ewald summation, see Kittel,29 for
example. The resulting Ewald formula for the electrosta
energy then becomes

Eelec5Ed1Er , ~2!

where

Ed5
1

2 (
n

(
i , j

8 qiqj

r i j ,n
erfc~br i j ,n!, ~3!

and

Er5
1

2 (
n

(
i , j

8 qiqj

r i j ,n
erf~br i j ,n!. ~4!

The inverse lengthb, a Gaussian-width parameter, alte
the relative weights of thedirect (Ed) and reciprocal (Er)
space contributions. For a givenb, the real space term is
calculated only for atom pairs within a certain distance ran
due to the fast decaying property of the erfc function. T
reciprocal term is converted through Fourier transforms t
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Er5
1

2 (
n

(
i , j

8
qiqj(

k
exp~2p ik•r i j ,n!

3E
0

`

exp~22p ik•s!
erf~bs!

s
ds

5
1

2V (
i , j

8
(

n
qiqjF 1

p (
kÞ0

exp~2p ik•r i j ,n!

3
exp~2p2k2/b2!

k2 1E
0

` erf~bs!

s
dsG ,

where k is the reciprocal space wave vector (k
5(L/nx ,L/ny ,L/nz)) andV is the total volume of the sys
tem. Forn50 andi 5 j , we have

lim
r i j ,n→0

erf~br i j ,n!

r i j ,n
5b erf8~0!5

2b

Ap
.

Thus, the term corresponding ton50 is removed to give

Er5
1

2V (
n

S (
i

qi D 2E erf~bs!

s
ds

1
1

2pV (
n

(
i , j

(
kÞ0

exp~2p2k2/b2!

k2 qiqj

3exp~2p ik•r i j ,n!2
b

Ap
(

i
qi

2 .

In particular, for a neutral system (( iqi50), we have

Er5
1

2pV0
(
i , j

(
kÞ0

exp~2p2k2/b2!

k2 qiqj

3 exp~2p ik•r i j !2
b

Ap
(

i
qi

2 , ~5!

whereV0 is the volume of the primary cell; above, and th
sum overn was removed by using the identity(n exp(2pik
•n)/V51/V0 . The first term in Eq.~5! is called thek-space
sum (Ek) and can be simplified by defining

S~k!5(
i

qi exp~2p ik•r i !,

known in crystallography as thestructure factor .29 It fol-
lows that

Ek5
1

2pV0
(
kÞ0

exp~2p2k2/b2!

k2 S~k!S~2k!. ~6!

The second term in the reciprocal sum@Eq. ~5!# is called the
self-energy,

Eself5
b

Ap
(

i
qi

2 . ~7!

Added also to the decomposition ofEelec into Ed andEr in
Eq. ~2! is a dipole correction term Ec depending on the
dipole moment of the unit cell and the asymptotic order
summation,30
Downloaded 07 May 2002 to 128.122.250.106. Redistribution subject to 
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Ec5
2p

~112e!V S (
i

qir i D •S (
i

qir i D , ~8!

wheree is the dielectric constant of the medium surroundi
the assembly of unit cells. Note that for conducting bound
conditions,e is ` andEc vanishes. Finally, an intramolecula
correction term is needed. This is because electrostatic in
actions for atom pairs connected via three bonds or less
generally not considered in molecular dynamics progra
~these atom pairs are collected in an exclusion listL0!. The
intramolecular exclusion termEintra becomes

Eintra5 (
i , j PL0

erf~br i j !

r i j
. ~9!

The complete Ewald formula is given by

Eelec5Ed1Er5Ed1Ec2Eself2Eintra.

The advantage of decomposing the electrostatic energ
above is that the exponentially converging sum overn andk
for Ed andEk in Eqs.~3! and ~6! allows the introduction of
relatively small cutoffs~or effectively few wave vectors!
without much loss of accuracy. Given real (R0) and recipro-
cal space (k0) cutoff values, there exists an optimalb such
that the accuracy of the approximated Ewald sum is su
ciently high.31 This follows the requirement that the real an
reciprocal-space contributions to the error should be appr
mately equal.31 Typically, b is chosen large enough so as
employ the minimum image convention for the direct te
Ed, and the overall complexity of the direct sum is there
O(N2). For large systems, a fixed cutoff radius~e.g., 9 Å in
AMBER! is generally used to further reduce the cost for dir
sum32 to O(N).

To produce an overallO(N logN) method, the particle-
mesh-Ewald method5 approximates the reciprocal sum usin
fast Fourier transforms with convolutions on a grid whe
charges and potentials are interpolated onto the grid po
In addition, particle-mesh-Ewald does not interpolate b
rather evaluates the forces analytically by differentiating
energies, thereby reducing memory requirements subs
tially.

III. DISTANCE BASED FORCE SPLITTING

Multiple-time-step techniques rely on the fact that t
total force can be partitioned into distinct components wh
evolve ~in time! on different time scales. The bond, angl
and torsion terms in the force field can be associated w
time scales according to their characteristic periods deri
from their harmonic potential forms. The nonbonded ter
~van der Waals and electrostatic interactions! are not easily
related to any unique time scales. Still, assignment to fo
classes can be made by assuming that the time scale o
nonbonded force decays as 1/r i j .33 It is thus generally suffi-
cient to define spherical shells of increasing radii aroun
particle to subdivide the nonbonded contributions to
force into terms characterized by different time scales.33

To avoid discontinuous changes of force and energ
each shell boundary is smoothed by a switch function wh
drops from 1 to 0 with a certainhealing length. Such force
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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splitting schemes are widely used in multiple-time-step in
grators for both Ewald-based11,12,34 and truncation-based
protocols.3,35,36

Most of the Ewald-based multiple-time-step metho
split the direct space term into two or more distance clas
while putting the intact reciprocal term into one of thes
classes. Since the direct space interactions are typically t
cated at a moderate value~8–10 Å!, the enhancement in
computational speedup associated with splitting the
space sum is limited due to the overhead of extra pai
maintenance.19 Moreover, since the Ewald reciprocal term
the sum of all erf-function-regulated pairwise electrosta
interactions~including weight-reduced short-range intera
tion term!, the reciprocal force must be updated often~e.g.,
every 4 fs! to conserve energy. If the reciprocal term can a
be regulated so the near-field contributions are remov
larger time steps for updating reciprocal interactions mi
be achieved.

In our improved version of force splitting for particle
mesh-Ewald, a nonbonded list up toc1Dc is maintained for
the evaluation of the direct-space and van der Waals te
~see Figs. 1 and 2!. The van der Waals term is switched o
betweenv1 and v2 and assigned to the medium class;
electrostatic interactions less than a cutoff distanceb are also
assigned to the medium class and smoothly switched off
tween a and b; the difference between this medium-cla
electrostatic contribution and the direct-space term is exa
the near-field contributions to be removed from t
reciprocal-space term~see Figs. 1 and 2!. Thus, the recipro-
cal term with the near-field contributions removed can

FIG. 2. The switch functionS(r ) ~solid line! and its derivativeS8(r ) used in
our multiple-time-step schemes@Eq. ~10! ~Ref. 36!#. Here a switch region
between 3–7 Å is used. The continuity of the first-order derivative is
important requirement for switch functions. The application of the swi
function to direct and reciprocal electrostatic interactions as well as van
Waals interactions is shown, so as to produce the right plot in Fig. 1.
Downloaded 07 May 2002 to 128.122.250.106. Redistribution subject to 
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assigned to the slow class. All other bonded terms are
signed to the fast class. At each update of the medium-c
force, the maximal particle movement is compared with
threshold value (;1 Å); once the threshold is reached, th
nonbonded list is rebuilt. The buffer intervalDc is in the
range of 0.5–1 Å.

The complete three classes force breakup can be sum
rized as follows:

F fast5 f bond1 f angle1 f torsion,

Fmed5 f̃ d1 f̃ v,

Fslow5 f̃ r ,

where f̃ v, f̃ d, and f̃ r are the switch-regulated van der Waa
direct, and reciprocal terms, respectively~see Fig. 2!.
Namely,

f̃ v52
1

2 (
n

(
i , j :r i j ,n,v2

8
S~r i j ,n ,v1 ,v2!¹rF Bi j

r i j ,n
12 2

Ai j

r i j ,n
6 G ,

f̃ d52
1

2 (
n

(
i , j :r i j ,n,R0

8 FS~r i j ,n ,a,b!¹r

qiqj

r i j ,n
G ,

f r52¹rE
r ,

f̃ r5 f r1
1

2 (
n

(
i , j :r i j ,n,R0

8 FS~r i j ,n ,a,b!¹r

qiqj

r i j ,n

2¹r

qiqj

r i j ,n
erfc~br i j ,n!G .

All force switches employ the following switch function36

for the switch interval@r 0 , r 1#, shown in Fig. 2,

S~r ,r 0 ,r 1!5H 1 if r<r 0 ,

x2~2x23!11 if r 0,r ,r 1 ,

0 if r>r 1 ,

~10!

wherex5(r 2r 0)/(r 12r 0). Note, that in multiple-time-step
schemes, the total energy is typically computed at the o
time step.

Our separate treatment of van der Waals and electros
interactions allows the electrostatic interactions to
switched off in the near field~smaller cutoff parameterb!,
with a shifting of the remaining electrostatic computation
the reciprocal space~smaller Gaussian-width parameterb!,
without sacrificing the accuracy of the van der Waals te
~which usually has the same cutoff as the direct-sp
term19!. The removal of near-field interactions from recipr
cal term is expected to allow a larger outer time step
updating the slow force.

IV. MULTIPLE-TIME-STEP INTEGRATORS
FOR PARTICLE-MESH-EWALD

To guide the development of efficient multiple-time-st
protocols, studies of very simple models, like the on
dimensional harmonic oscillator15,37 are instructive. Though
not much discussed until now, the two Verlet variants, kno
as position verlet~PV! and velocity verlet~VV ! ~Refs. 38–

n

er
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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40! offer different practical performance, though their err
is the same in theory at the limit of infinitesimal time step
Both are reversible38 and symplectic.41

Consider Newton’s equation of motion for anN-particle
system,

M V̇5F~X!52¹E~X~ t !!,

where M is the mass matrix,X and V are the collective
position and velocity vectors, and the dot superscripts den
differentiation with respect to timet. The two Verlet schemes
are described as42

Vn11/25Vn1
Dt

2
M 21Fn,

Xn115Xn1DtVn11/2,

Fn1152¹E~Xn11!,

Vn115Vn11/21
Dt

2
M 21Fn11,

for VV and

Xn11/25Xn1
Dt

2
Vn,

Fn11/252¹E~Xn11/2!,

Vn115Vn1DtM 21Fn11/2,

Xn115Xn11/21
Dt

2
Vn11,

for PV. Here superscriptsn denote the discrete approxima
tion at timenDt, whereDt is the time step.

For Newtonian dynamics, though VV-based impul
multiple-time-step schemes36 are widely used, the PV ha
stability advantages at large time steps.40 Both Verlet variants
can be traced back to the leapfrog/Verlet/Sto¨rmer
scheme24,43–45 ~see Appendix B!. For Langevin dynamics
constant extrapolation is ideal for slow force evaluation~to
damp out resonances15!; both the midpoint and constant ex
trapolation schemes with velocity corrections are good c
didates for evaluation of the medium force. The LN multip
time-step protocol15,39 with midpoint and constan
extrapolation for the medium and slow-force evaluation,
spectively, has proven to be effective for truncation-ba
schemes.3,35,36

In our proposed multiple-time-step force splitting f
particle-mesh-Ewald, recall that the slow force is compo
of the reciprocal term with the cancellation term from t
near field interactions; the switched electrostatic and van
Waals interactions are evaluated once for each medium-f
update. We have found that PV-based constant extrapola
with velocity correction is more effective than analogous V
schemes~based on resonance analysis of a 1D harmonic
cillator; details are provided in the Ph.D. thesis of Qian37!.
Therefore, the PV-based impulse multiple-time-step met
~PV-MTS, see Table I!, is an optimal choice for Newtonian
dynamics; PV-based constant extrapolation with veloc
correction for the medium force, along with constant e
trapolation for the slow force~LN2, see Table II!, is a good
Downloaded 07 May 2002 to 128.122.250.106. Redistribution subject to 
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candidate for Langevin dynamics. Furthermore, with B
endsen’s thermostat and barostat coupling,22,23 temperature
and pressure can be controlled to mimic~but not reproduce
rigorously! canonical, isothermal, and isobaric ensembl

TABLE I. Position Verlet based impulse multiple-time-step schemes
Newtonian~PV-MTS! and Langevin~LANG-MTS! dynamics.

TABLE II. Position Verlet based extrapolation multiple-time-step schem
for Langevin dynamics~LN and LN2!.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



ro
er
o

th
ris
re
r

ct
e

n

in
-

es
N

n
-
te
t

c
y-

ot
xt

E

le

n

n-

r

g
co
ov
-
a

d in

A
t-

is
We
are
s-

to
ests

rted
ng.
ergy

y
ally

ds.
rs
ys-
of

or

t of
ast

d.
n.
-

le-
sh-
are

-
r

rgy

5976 J. Chem. Phys., Vol. 116, No. 14, 8 April 2002 X. Qian and T. Schlick
For pressure coupling, the internal pressure obtained f
the molecular virial and kinetic energy is measured ev
inner time step, but the scaling of box dimension and co
dinates is performed once per outer time step~the scaling
factor is derived from the average internal pressure!. In this
way, the slow force evaluation can be performed after
scaling operation to avoid approximation errors that can a
from multiple scaling in the inner cycle. For temperatu
coupling, in contrast, velocity scaling is performed at eve
inner time step to ensure smooth motion. The scaling fa
is re-evaluated every outer time step from the average kin
energy over the multiple inner cycles.

Both our multiple-time-step schemes for Newtonian a
Langevin dynamics~PV-MTS and LN2, respectively! are
given in Tables I and II with Berendsen’s pressure coupl
and SHAKE~Ref. 46! constraints applied; Berendsen’s tem
perature coupling for Newtonian dynamics is similar to pr
sure coupling and omitted for simplicity. The original L
multiple-time-step protocol15,39 is also given for comparison
~Table II!. All symbols in these tables have their usual mea
ing as defined above. In addition,Pt is the accumulated pres
sure andP0 the reference pressure. Given an inner time s
Dt, the medium force is updated everyk1 inner time steps a
Dtm5k1Dt, and the slow force is recalculated everyk2 me-
dium cycles atDt5k2Dtm5k1k2Dt. The symbolgetP in
the code sketched is the pseudofunction that obtains the
rent pressure;SHAKErepresents the SHAKE constrained d
namics operation46 ~applied to coordinates only!, andscalX
indicates coordinate rescaling in the pressure-control pr
col. Although it seems that VV schemes might save an e
SHAKE evaluation~with respect to PV schemes!, the latter
can in fact be rearranged in a way to avoid two SHAK
evaluations per inner loop.19 In practice, we find that the
advantage of extrapolation-based MTS methods39 is ruined
by the cancellation error of Ewald methods17 ~results not
shown!; the alternative is to use impulse-based multip
time-step methods for Langevin dynamics~LANG-MTS, see
Table I! as well. We emphasize that with improved treatme
of the cancellation error~not yet available inAMBER6.0!, it is
likely extrapolative MTS methods will regain their adva
tage and the outer time step can be pushed yet further.

V. NUMERICAL EXPERIMENTS

A. Biomolecular systems

Our three representative test cases are a water box~49
349349 Å3! of 4096 molecules~12 288 total atoms!; a pro-
tein ~dihydrofolate reductase! solvated in a water box~70
360354 Å3! with counterions~11 Na1, 22 930 total at-
oms!; and a 14-base-pair DNA double helix~DNA:
GCTAAAAAAGGGCA! with counterions and solvent wate
molecules~26 Na1, 15 320 total atoms! in a box ~71350
343 Å3!.47 All systems are minimized for 1000 cycles usin
the steepest descent method followed by 5000 cycles of
jugate gradient. The three systems are heated to 300 K
10 ps, with SHAKE~Ref. 46! constraints on all bonds in
volving hydrogen, and equilibrated for 18 ps by the origin
leapfrog integrator inAMBER6.0 ~Ref. 21! with a 9 Å direct
space cutoff distance and a time step of 1 fs.
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B. Multiple-time-step performance assessors

Two energy conservation parameters have been use
the past as quality control for energy conservation.34,48,28

One is the relative energy error~h!, given as

h5
1

NT
(
i 51

NT UEtot
i 2Etot

0

Etot
0 U, ~11!

where Etot
i is the total energy at stepi , Etot

0 is the initial
energy, andNT is the total number of sampling points.
value ofh<0.003, i.e., log10h,22.5, is considered accep
able in terms of numerical accuracy.49 This parameter can be
a good indicator of energy conservation, if the simulation
performed long enough to reflect error accumulation.
have found that simulations of length 400 ps or longer
required to verify integrator stability. That is, small but sy
tematic drifts can take several hundred picoseconds
emerge. Hence, multiple-time-step/particle-mesh-Ewald t
based on several picoseconds~e.g., as in Ref. 20! are far too
short to demonstrate stability and accuracy, and repo
speedups and accuracies of integrators may be misleadi

Another trajectory assessment parameter is the en
conservation ratio (R) defined by

R5DEtot /DEk , ~12!

whereDEtot andDEk are the RMS deviations of total energ
and kinetic energy, respectively. The total energy is gener
considered well conserved whenR<0.05.50 However, as
noted by Procacciet al.,18 this criterion is misleading for
comparing multiple-time-step to single-time-step metho
In particular, well designed multiple-time-step integrato
can compute structural and dynamical properties of the s
tem more accurately than single-time-step simulations
comparable and smallerR values.33

A more direct indication of energy conservation f
multiple-time-step methods is the relative energy drift ratek,
which we define to be the slope of the least-squares best fi
the energy evolution over time to a straight line. In the le
square sense~denoted by8!, we can write

Etot
i

Etot
0 8

k

tu
t i1b0 , ~13!

where t i5 iDt at step i , b0 is a parameter, andtu is the
preferred time unit to makek unitless. If tu is in units of
picoseconds,k gives the relative energy drift per picosecon
A small k value is a good indicator of energy conservatio
For reference, log10k values for the single-time-step leap
frog integrator inAMBER are about26.7, 26.4, and26.3
for Dt50.5, 1.0, and 2.0 fs, respectively.

C. Time step and switch function parameters

In addition to the regular parameters for the partic
mesh-Ewald setup, the multiple-time-step/particle-me
Ewald integrators have several tunable variables. These
the inner time step~Dt!, medium and slow force update fre
quencies~k1 andk2!, and the switch-interval parameters fo
electrostatic~a andb! and van der Waals~v1 andv2! inter-
actions. Since force switching aims to maintain good ene
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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conservation for multiple-time-step integrators, the width
the switch region~the ‘‘healing length’’ isb–a! influences
energy conservation and must be chosen with care.
Langevin dynamics, the damping constantg can also be ad-
justed to control the coupling strength. This is because
use of Langevin dynamics is numerical, to dam
instabilities,39 rather than physical.10 A variety of numerical
tests are performed on three test cases to define the ac
able parameter regions and optimal parameter sets for di
ent molecular dynamics protocols~see below!.

D. Results on appropriate buffer lengths

Simulations with the multiple-time-step protocol of 1/2
fs, for fast/medium/slow force partitioning were perform
for the solvated protein for 200 ps to determine an appro
ate switch buffer length. The electrostatic force in the m
dium class is switched off froma55 Å to b and the van der
Waals force fromv156 Å to v2 . The healing lengthb–a
5v2–v1 was varied from 1 to 4 Å. For an outer time step
fs or less, we find that the total energy is not sensitive to
healing length or the switch functions~results not shown!.

FIG. 3. Energy conservation for different healing lengths as evaluated
200 ps dynamics simulations for our solvated protein system. The solid
with error bars is the total energy and its standard deviation~scale at left
vertical axis!. The dashed line is the conservation ratioDEtot /DEk ~with
scale at right vertical axis!, the fluctuation of total energy divided by th
fluctuation of total kinetic energy@Eq. ~12!#.

FIG. 4. Characteristic periods for the cancellation term for particle-me
Ewald in AMBER6.0. Left: electrostatic energies of the single water molec
system~Ref. 17! calculated from the single-time-step method~leapfrog Ver-
let, Dt50.5 fs! and MTS method~position Verlet,Dt50.5 fs, k152 and
k252!. Right: the Fourier transform of the autocorrelation function of ele
trostatic energy. Two periods are captured~110 and 200 fs!.
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For outer time steps of 6 fs or larger, a healing length of 3
or more for both the electrostatic and van der Waals inter
tions is necessary to suppress the energy drift~Fig. 3!. Imple-
mentation of multiple-time-step integrators without for
switches~e.g., step function used in Ref. 20! suffer from this

y
e

-

-

FIG. 5. Lower bound forg for extrapolation and impulse multiple-time-ste
methods as a function of the slow to fast period ratio, as calculated
Appendix A. The fast period (T1511 fs) roughly corresponds to the cha
acteristic period of C–H bond stretching.

FIG. 6. The deviation of energy components relative to the reference tra
tories for impulse multiple-time-step Newtonian and Langevin integrat
for solvated systems. All simulations have an inner time step of 0.5 fs a
medium time step of 1 fs. Newtonian multiple-time-step simulations w
0.5/1/2 fs protocols are used as reference.~This reference is used rather tha
a single-time-step scheme to mimic the same switch applied to the van
Waals force; similar results are obtained for comparisons without a van
Waals switch and will be reported by Barash and Schlick.! All simulations
are 5 ps in length.
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outer time step barrier. Based on our experiments, we cho
the buffer length to be 3 or 4 Å in our preferred multiple-
time-step/particle-mesh-Ewald protocols.

E. Limits for outer time step

Procacciet al.17 revealed a characteristic period asso
ated with the cancellation error of Ewald methods. This er
arises from the truncation~due to the discrete summation! at
some cutoff wave vector valuek0 and removal of the erf-
weighted electrostatic interactions~e.g., intramolecular ex-
cluded interactions! from the reciprocal-space term. Th
simple system devised in Ref. 17~single water molecule in a
cubic box with side length of 64 Å! yields a total electro-
static energy that corresponds exactly to the cancellation
ror. The cancellation errors from Procacciet al. show a pe-
riod of the order 10–20 fs.

The instability of the cancellation errors can be su
pressed if a proposed correction term is included,17 but this is
not implemented inAMBER6.0. We found that the PME
implementation inAMBER6.0 ~Ref. 51! shows similar behav-
ior for the correction term, with two characteristic periods
the order of 110 and 200 fs~Fig. 4!. This imposes an uppe
bound on the outer time step@the linear stability limit is the
period overp ~Ref. 39!# of 35 fs and of 25 fs@period over
A2p ~Refs. 15,42!# to avoid fourth-order resonance. Lang

FIG. 7. Spectral densities of solvated DNA~top! and protein~bottom! sys-
tems ~derived from all solute atoms! for various protocols. For protoco
details, see Sec. V E.
Downloaded 07 May 2002 to 128.122.250.106. Redistribution subject to 
se

-
r

r-

-

vin dynamics protocols with a properg can suppress the firs
resonance spike near half of the fast period. The perio
slow force also enforces a lower bound forg of about 5 ps21

to suppress the first resonance spike~see Fig. 5 and Appen
dix A!.

To find the largest outer time step applicable for o
impulse multiple-time-step integrators for both Newtoni
and Langevin dynamics, we varied the outer time step from
to 20 fs, with fixed inner time step (Dt50.5 fs) and medium
force update frequency~k152, that isDtm51 fs!. The elec-
trostatic force in the medium class is switched off from 5
9 Å, and the van der Waals force is similarly treated from
to 10 Å. A nonbonded-interaction list over 10 Å is main
tained with a 1 Å bufferregion and a 9 Ådirect space cutoff.
All simulations are performed for 5 ps~short simulations!.
~The candidates that will be produced for optimized pro
cols will be studied for longer simulations to verify stabilit
and accuracy.! Both the DNA and protein test cases are e
amined. Both show an upper bound of outer time step ne
fs ~Fig. 6! for Newtonian dynamics and 16 fs for Langev
dynamics~Fig. 6!. This indicates that these limits are syste
independent.~Longer simulations with an outer time ste
larger than 8 fs exhibit notable energy drifts soon after 20
results not shown.!

To guarantee that these multiple-time-step implemen
tions do indeed generate the correct dynamics, the spe
density plots from multiple and single-time-step methods
compared in Fig. 7. All simulations for these analyses
based on 9.6 ps trajectories with velocities of solute ato
recorded every 2 fs. All bonds involving hydrogens are co
strained with SHAKE. A time step of 0.5 fs is used for th
reference single-time-step method and 1/2/4 fs for multip
time-step. Our figure denotes the multiple-time-step proto
by Dt/Dtm /Dt for Newtonian dynamics andDt/Dtm /Dt,g
for Langevin dynamics. The damping parameterg55 ps21

is used for Langevin dynamics.
Figure 7 demonstrates that our multiple-time-step imp

mentations give similar spectral density distributions relat
to single-time-step methods for Newtonian dynamics, w

FIG. 8. Speedup for different multiple-time-step protocols~listed in the
horizontal axis! relative to the single-time-step method for three sets
electrostatic/van der Waals switches. The damping constant ofg55 ps21 is
used in the two Langevin simulations reported. The dashed line repres
the analytical speedup estimate assuming the same nonbonded list siz
direct-space cutoff for both multiple and single-time-step methods@see Eq.
~14!#. The base-line single-time-step simulation has a nonbonded list o
Å and a 9 Ådirect-space cutoff. All simulations are 1 ps in length.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE III. Results of long multiple-time-step simulations for stability and accuracy analysis.
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comparable quality. The Langevin multiple-time-step sim
lations produce peaks at the same wave numbers with lo
magnitudes due to the stochasticity, as expected.

F. Optimized protocols

For a given multiple-time-step protocol (Dt/Dtm /Dt),
the electrostatic and van der Waals interactions in the
dium class are evaluated from the nonbonded atom pairli
each medium time step with a computational cost ofCm per
update. During the slow force update at each outer time s
the nonbonded atom pairlist is accessed again to obtain
correction term for electrostatic force. Assuming that t
nonbonded computation dominates in total computatio
cost, andb is close toc1Dc, evaluating the slow force
requires close toCm work. For an outer time stepDt, the
total CPU costs are thus approximately (k211)Cm . For a
single-time-step method with a reference time stepDt0 , the
total computational cost to cover an interval of lengthDt is
Cm (Dt/Dt0) 5k1k2Cm (Dt/Dt0). Thus, an analytical esti
mate for the limiting multiple-time-step speedup is giv
from these two estimates as

k1k2

k211 S Dt

Dt0
D . ~14!

We can see from Fig. 8 that the maximal achievable spee
is quite modest. A slight improvement can be made by m
ing the switch region of the electrostatic interactions into
near field, which reduces the nonbonded list maintena
time for the electrostatic force update. Greater speedups
also be achieved by reducing the nonbonded list furt
through moving the switch region of van der Waals inter
tions into the near field.19 Short simulations of length 1 ps fo
our DNA and protein systems were performed for a vari
of MTS protocols to experiment with associated parame
sets.

Figure 8 shows that the speedup of each protocol is
dependent of the system size and content. The best pro
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for Newtonian dynamics is 1/3/6 fs with a switch for ele
trostatic interaction from 3 to 7 Å and a switch for van de
Waals interactions from 4 to 8 Å. A speedup factor of 6.5
achieved relative to 0.5 fs single-time-step simulations.
Langevin dynamics, the optimized protocol has the time-s
combination 0.8/3.2/16 fs forg55 ps21 with the same
switches mentioned above. The speedup factor is 7.5
Langevin dynamics. Of course, largerg values can be used
to push up the Langevin outer time step further and hence
speedup.

Simulations of length 400 ps or longer were then p
formed for different protocols to verify their long time sta
bilities ~Table III!. All simulations in Table III are stable
with no notable energy drifts during the simulation, with th
exception of protocolb for Newtonian dynamics, which ha
near field switch regions (b58 Å) and larger outer time step
(Dt58 fs).

For reference, single-time-step simulations of 200
with a time step of 0.5 fs for our protein or DNA system
have the drift ratek;231027, i.e., log10k;26.7 ~protocol
0, Table III!. In our study, we found that values ofk<3
31025, i.e., log10k,24.5 for multiple-time-step integra
tors, indicate good energy conservation~Table III!. The best
protocol for Newtonian dynamics also has the best ene
conservation ratioR (R50.21). Systematically, all Langevin
simulations yield largerR values ~about 1.7! as expected
from the stochastic formulation.

For Langevin dynamics, bothR and log10h values are
not good indicators of energy conservation; the log10k val-
ues seem more proper for stability assessment.

Figure 9 shows the energy evolution of the DNA syste
with an 8 Å cutoff ~protocols b, c, and d!. While Langevin
dynamics exhibits intrinsically larger energy fluctuatio
than Newtonian dynamics, both protocols c and d ha
very low relative energy drift rates~log10k525.30 and
25.07, respectively!. The Newtonian dynamics trajectorie
at 8 fs with 8 Å cutoffs~protocol b! have noticeable energ
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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drift rate (log10k524.4), about four times larger tha
protocol d.

At the time of our writing this manuscript, a preprin
communicated to us by the authors Zhouet al.20 pointed out
the same problem of fast components presented in recipr
term of Ewald methods. Their very similar solution uses
step function rather than a smooth function to remove
fast component from reciprocal term. In our study, we fi
that the medium force stability can be improved by a smo
switch function. Though switch functions are used f
smooth transition of different force classes, the unaddres
problem of sudden truncation resulting from the step fu
tion formulation will probably restrict the largest mediu
time step applicable and introduce energy drift for long d
ration simulations. Indeed, the simulation length of 1
~Ref. 20! is much too short to assess multiple-time-ste
particle-mesh-Ewald integration stability.

G. Temperature and pressure controls

Our protocols for thermostat and barostat coupling w
multiple-time-step integrators are verified by a 1.2 ns sim
lation for the solvated protein~protocol h!. The pressure his
togram for the last 800 ps of the simulation shows an aver
internal pressure of 0.99 bar and a root-mean square de
tion of 176.61 bar~Fig. 10!.

H. Parallel scalability

The parallel scalability of our current multiple-time-ste
implementations is explored by experimenting from 1 to
processors of an SGI Origin3000 computer. Again we
performance that is independent of the system size. The M
implementation has the same scalability as the orig
single-time-step method up to 8 processors, which is the
expected given the extra bookkeeping work in multiple-tim
step protocols~Fig. 11!.

FIG. 9. Energy evolution for the solvated DNA system with a 3–7 Å swi
for electrostatic force and a 4–8 Å switch for van der Waals force.
simulations are 400 ps in length.
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VI. CONCLUSIONS

We have developed efficient and versatile multiple-tim
step/particle-mesh-Ewald protocols based on a smo
switch function to regulate direct and reciprocal-space Ew
terms so that the fast component in the reciprocal term
removed. This approach yields improved stability for the m
dium force, and thus large outer time steps can be used. L
simulations, as done here, are essential to demonstrate
stability; shorter tests, as reported,20 may not represent be
havior accurately. We also use separate switch function
handle the van der Waals interactions so that the direct fo
associated with the electrostatic interactions can be fur
reduced, without compromising the accuracy of van d
Waals interactions, as done in Ref. 19. In addition to t

l
FIG. 10. Pressure histogram of the solvated protein over the last 800 p
a 1.2 ns simulation with the multiple-time-step protocol 1/2/4 fs. The ve
cal line in the center indicates the external pressure~1 bar!.

FIG. 11. Parallel scalability for multiple-time-step integrators. All simul
tions are performed on an SGI Origin3000 computer. Speedups are giv
the ratio of computational times~excluding setup times! reported byAM-

BER6.0 relative to single processor results. The multiple-time-step simu
tions use protocol g in Table III. A 0.5 fs time step and a 5–9 Å cutoff ran
are used for single-time-step simulations. All simulations are 1 ps in len
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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improvement over our prior implementation,19 extensions to
constant temperature and pressure simulations have
implemented.

For Newtonian dynamics, our optimized protocol~1/3/6
fs with a 3–7 Å switch for electrostatics and 4–8 Å swit
for van der Waals forces! yields a speedup of 6.5 relative t
0.5 fs single-time-step simulations; for Langevin dynami
the optimized protocol~0.8/3.2/16 fs withg55 ps21! has a
speedup factor of 7.5. These values are very close to
estimated maximal achievable speedup values~Fig. 11!. The
stability and accuracy of temperature and pressure con
within our multiple-time-step implementations are verifi
with long simulations. These program segments are now
cluded in a test version ofAMBER and are expected to b
released with futureAMBER versions@Barash and Schlick~in
preparation!#.

Further speedup improvements can be achieved by
dressing the problem of large cancellation errors in
particle-mesh-Ewald approach,17 using alternative core
functions52 ~that better separate fast and slow interactio
and/or push period of numerical cancellation term furthe!,
resorting to alternative fast electrostatics methods like m
tigrid or finite-element approaches,53 or applying particle-
mesh-Ewald-type methods to van der Waals terms to fur
reduce the nonbonded pairlist.
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APPENDIX A: LINEAR RESONANCE FOR IMPULSE
AND EXTRAPOLATION-MULTIPLE-TIME-STEP
METHODS AND ESTIMATE OF THRESHOLD g
FOR LANGEVIN DYNAMICS

Following the same notation as Sandu and Schlick,15 we
can develop a more accurate estimate of the resonant s
in the impulse splitting scheme by analyzing a simple tw
class linear system with two force constantsl1@l2 , where
Ẋ5V andV̇52(l11l2)X. The force associated withl1 is
updated every inner time stepDt and the force associate
with l2 is recalculated at every outer time step~which is
kDt for some integerk!. The impulse-multiple-time-step
force splitting for VV gives a propagator matrixAIV as de-
fined in the original paper.15 For most values ofk, AIV will
have a pair of complex conjugate eigenvaluesx1,2 as solu-
tions of the equation,

x22Tr~AIV!x1det~AIV!50,

where Tr(AIV) and det(AIV) denote the trace and determina
of the propagator, respectively. The solutions have the fo
~we drop the arguments for trace and determinant for s
plicity!,

x1,25
1
2 ~Tr6ATr224 det!.
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The eigenvalues will approach the real axis and eventu
become a real pair for some outer time stepskDt. The reso-
nance spikes correspond to the extremes of the two rea
genvalues,

]x1

]k
50 or

]x2

]k
50.

The above two equations can be simplified to give a gen
formula from which the resonance spikes can be obtaine

S ] det

]k D 2

1detS ] Tr

]k D 2

5TrS ] Tr

]k D S ] det

]k D .

After algebraic manipulations,37 we obtain the eigenvalues a
resonance spikes as

exp~2gkDt/2!FA11S kl2Dt

2Al1
D 2

6
kl2Dt

2Al1
G , ~A1!

where the damping constantg has a nonzero value fo
Langevin dynamics or zero for Newtonian dynamics. F
stability, g must be large enough to keep the first spi
(kDt'T1/2) below one. This leads to the following lowe
bounds for numerical stability:

g.
4

T1
lnS l2p

2l1
1A11S l2p

2l1
D 2D ,

for impulse-based multiple-time-step methods. For all va
ants of extrapolation-multiple-time-step schemes, the fi
spike is quite similar in magnitude;15 hence, we can use th
estimates for constant extrapolation to derive the low
bound ofg in Langevin dynamics,

g>
4

T1
lnS 11

2l2

l1
D .

Results are shown in Fig. 5 as a function ofT2 /T1 , with
T1511 fs to mimic biomolecular systems. The correspon
ing l i values fori 51,2 are15,42 l i5(2p/Ti)

2.

APPENDIX B: EQUIVALENCE OF LEAPFROG,
VELOCITY, AND POSITION VERLET VARIANTS

Leapfrog, velocity, and position Verlet are all derive
from the original discretization formula for advancing pos
tions adopted by Verlet44 and attributed to Sto¨rmer,45

X~ t1Dt!52X~ t1Dt!2X~ t2Dt!1F~X~ t !!~Dt!2.

The so-called half-step leapfrog24,43scheme was proposed t
remove numerical roundoff errors resulting from the seco
order term O((Dt)2), as well as to give velocity
information54 ~Table IV!. There is a half-time-step offset be
tween position and velocity updates~hence the name leap
frog!. Here we show that they are all equivalent: differe
formulations of leapfrog will lead to either velocity Verlet o
position Verlet.

In the original version of the leapfrog scheme, veloc
updates lead each cycle of propagation, so we can call
scheme thevelocity-lead leapfrog~V-Leap!. It is also pos-
sible to write the leapfrog scheme with position upda
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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leading the propagation; we call this variant theposition-lead
leapfrog ~P-Leap!. With extra storage for velocities and po
sitions at different time steps, the original leapfrog sche
~V-Leap, see Table IV! can be rewritten to remove the hal
time-step offset. In the modified version, the positio
velocity pair$Xt , Vt% have the same propagation formulas
$X,V% in the original version. The superscripts in Table
indicate the time intervals from a given initial conditio
$X0 ,V0%.

Introducing a force operator K̂, where K̂(X)
52M 21¹E(X), Eqs. ~a!, ~b!, and ~c! in Table IV can be
written in matrix form as

FXn

VnG5ṼS Dt

2
,K̂ D FXt

n

Vt
nG ,

or FXt
n

Vt
nG5ṼS 2

Dt

2
,K̂ D FXn

VnG , ~B1!

whereṼ(Dt,K̂) is the velocity propagation operator,

Ṽ~Dt,K̂ !5F I O

DtK̂ I G .

Here, I is the identity matrix andO is the zero matrix. It is
clear thatṼ(t1 ,K̂)Ṽ(t2 ,K)5Ṽ(t11t2 ,K̂), and Ṽ(0,K̂)5I .
Similarly, for Eqs.~a! and ~d! in Table IV, we have

FXt
n11

Vt
n11G5X̃~Dt!F Xt

n

Vt
n11G

5X̃~Dt!Ṽ~Dt,K̂ !FXt
n

Vt
nG , ~B2!

whereX̃(Dt) is the position propagation operator,

X̃~Dt!5F I Dt

O I G .

TABLE IV. Original and modified versions of the velocity-lead~V-Leap!
and position-lead leapfrog~P-Leap! Verlet schemes as described in Appe
dix B. In the modified version of V-Leap, (Xt ,Vt) has the same propagatio
formulas as (X,V) in the original version. The output ofX is delayed one
time step through theXt and velocityV is interpolated between two half
time-step updates; this removes the half-time-step offset between pos
and velocity outputs.
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Combining Eqs.~B1! and~B2!, the propagation matrix from
(Xn,Vn) to (Xn11,Vn11) can be expressed as

FXn11

Vn11G5ṼS Dt

2
,K̂ D FXt

n11

Vt
n11G

5ṼS Dt

2
,K̂ D X̃~Dt!Ṽ~Dt,K̂ !FXt

n

Vt
nG

5ṼS Dt

2
,K̂ D X̃~Dt!ṼS Dt

2
,K̂ D FXn

VnG .
This is exactly the same propagator for the VV scheme,
this identity implies that the leapfrog and VV schemes p
duce identical trajectories for the same initial conditi
$X0 ,V0% in exact arithmetic.

Similarly, it can be shown that the position-lead leapfr
~P-Leap, see Table IV! is equivalent to position Verlet.37 In
practice, the numerical roundoff errors will cause trajector
to diverge after a certain simulation length. Figure 12 sho
their similarity for trajectories of a harmonic oscillator a
well as a protein model.

FIG. 12. Comparison of different Verlet schemes~leapfrog, VV, and PV!.
~Top! linear test case: phase space distributions of a harmonic oscillator.
oscillator has unit mass and unit force constant with an initial posit
displacement of 3. For a small time-step (Dt50.1), all three Verlet variants
generate the correct ensemble as expected from analytical solution~thick
middle ring!; at larger time step ofDt50.8, leapfrog and VV give an
ensemble with underscaled velocity~innermost ring!, while PV overscales
the velocity~outermost ring!. ~Bottom! nonlinear test case: end-to-end di
tance betweenCb andCh of the side chain of lysine from a 4 ps simulation
with 0.5 fs time step of a single lysine in a large box (64364364 Å3). All
simulations start from the same initial condition. VV and leapfrog yie
almost the same trajectory for the first 4 ps, then diverge due to accumu
errors. PV deviates from leapfrog and VV after about 0.6 ps.

on
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



-

2

E

S

am
ut.

B.
ma
th

Ser.

er-

5983J. Chem. Phys., Vol. 116, No. 14, 8 April 2002 Multiple-time-step particle-mesh-Ewald integrators
1T. Schlick, J. Comput. Phys.151, 1 ~1999! ~special volume on Computa
tional Biophysics!.

2P. Ewald, Ann. Phys.~Leipzig! 64, 253 ~1921!.
3P. J. Steinbach and B. R. Brooks, J. Comput. Chem.15, 667 ~1994!.
4J. Norberg and L. Nilsson, Biophys. J.79, 1537~2000!.
5T. Darden, D. York, and L. Pedersen, J. Chem. Phys.98, 10089~1993!.
6W. H. Press, S. A. Teukolsky, W. Vetterling, and B. P. Flannery,Numerical
Recipes in C, 2nd ed.~Cambridge University Press, Cambridge, 199!,
Chap. 12.

7J. A. Board, Jr., L. V. Kale´, K. Shulten, R. D. Skeel, and T. Schlick, IEE
Comput. Sci. Eng.1, 19 ~1994!.

8Y. Duan and P. Kollman, Science282, 740 ~1998!.
9J. Izaguirre, S. Reich, and R. D. Skeel, J. Chem. Phys.110, 9853~1999!.

10T. Schlick, Structure~London! 9, R45 ~2001!.
11A. Cheng and Kenneth M. Merz, Jr., J. Phys. Chem. B103, 5396~1999!.
12P. Procacci, T. Darden, E. Paci, and M. Marchi, J. Comput. Chem.18,

1848 ~1997!.
13M. Kawata and M. Mikami, J. Comput. Chem.21, 201 ~2000!.
14E. Barth and T. Schlick, J. Chem. Phys.109, 1617~1998!.
15A. Sandu and T. Schlick, J. Chem. Phys.81, 3684~1984!.
16B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States,

Swaminathan, and M. Karplus, J. Comput. Chem.4, 187 ~1983!.
17P. Procacci, M. Marchi, and G. J. Martyna, J. Chem. Phys.108, 8799

~1998!.
18P. Procacci, T. Darden, and M. Marchi, J. Phys. Chem.100, 10464~1996!.
19P. F. Batcho, D. A. Case, and T. Schlick, J. Chem. Phys.115, 4003~2001!.
20R. Zhou, E. Harder, H. Xu, and B. Berne, J. Chem. Phys.115, 2348

~2001!.
21D. A. Pearlman, D. A. Case, J. W. Caldwell, W. S. Ross, T. E. Cheath

III, S. DeBolt, D. Ferguson, G. L. Seibel, and P. A. Kollman, Comp
Phys. Commun.91, 1 ~1995!.

22H. Berendsen, J. Postma, A. Dinola, and J. Haak, J. Chem. Phys.81, 3684
~1984!.

23D. der Spoel, A. van Buuren, E. Apol, P. M. D. Tieleman, L. Sijbers,
Hess, K. Feenstra, E. Lindahl, R. van Drunen, and H. Berendsen, Gro
User Manual version 2.0, Nijenborgh 4, 9747 AG Groningen, The Ne
erlands. Internet: http://md.chem.rug.nl/;gmx, 1999.

24R. W. Hockney and J. W. Eastwood,Computational Simulation Using
Particles ~McGraw–Hill, New York, 1981!.

25A. Appel, SIAM ~Soc. Ind. Appl. Math.! J. Sci. Stat. Comput.6, 85
~1985!.
Downloaded 07 May 2002 to 128.122.250.106. Redistribution subject to 
.

,

cs
-

26J. E. Barnes and P. Hut, Nature~London! 324, 446 ~1986!.
27L. Greengard and V. Rokhlin, J. Comput. Phys.73, 325 ~1987!.
28R. Zhou and B. J. Berne, J. Phys. Chem.103, 9444~1995!.
29C. Kittel, Introduction to Solid State Physics~Wiley, New York, 1971!.
30S. W. DeLeeuw, J. W. Perram, and E. R. Smith, Proc. R. Soc. London,

A 373, 27 ~1980!.
31M. Deserno and C. Holm, J. Chem. Phys.109, 7678~1998!.
32A. Toukmaji and J. A. Board, Comput. Phys. Commun.95, 81 ~1996!.
33P. Procacci and M. Marchi, J. Chem. Phys.104, 3003~1996!.
34P. Procacci and B. J. Berne, J. Chem. Phys.101, 2421~1994!.
35D. D. Humphreys, R. A. Friesner, and B. J. Berne, J. Phys. Chem.98,

6885 ~1994!.
36G. Martyna, M. Tuckerman, D. Tobias, and M. Klein, Mol. Phys.87, 1117

~1996!.
37X. Qian, Ph.D. thesis, New York University, 2002.
38M. Tuckerman, B. J. Berne, and G. J. Martyna, J. Chem. Phys.94, 6811

~1991!.
39E. Barth and T. Schlick, J. Phys. Chem.109, 1633~1998!.
40P. F. Batcho and T. Schlick, J. Comput. Phys.115, 4019~2001!.
41R. Skeel, G. Zhang, and T. Schlick, SIAM J. Sci. Comput.~USA! 18, 203

~1997!.
42T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary

Guide ~Springer-Verlag, New York, 2002!, Chaps. 12 and 13~in press!.
43R. W. Hockney, Methods Comput. Phys.9, 136 ~1970!.
44L. Verlet, Phys. Rev.159, 98 ~1967!.
45C. Störmer, Arch. Sci. Phys. Nat.24, 5 ~1911!.
46J. Ryckaert, G. Ciccotti, and H. Berendsen, J. Comput. Phys.23, 327

~1977!.
47X. Qian, D. Strahs, and T. Schlick, J. Mol. Biol.308, 681 ~2001!.
48M. Watanabe and M. Karplus, J. Chem. Phys.99, 8063~1993!.
49F. Figueirido, R. Levy, R. Zhou, and B. Berne, J. Chem. Phys.106, 9835

~1997!.
50M. Watanabe and M. Karplus, J. Phys. Chem.99, 5680~1995!.
51U. Essmann, M. Perera, M. Berkowitz, T. Darden, H. Lee, and L. Ped

sen, J. Chem. Phys.103, 8577~1995!.
52P. F. Batcho and T. Schlick, J. Chem. Phys.115, 8312~2001!.
53C. Sagui and T. Darden, J. Chem. Phys.114, 6578~2001!.
54M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids~Oxford

University Press, New York, 1987!, Chap. 3.
AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


