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ABSTRACT

Understanding the structural repertoire of RNA is
crucial for RNA genomics research. Yet current
methods for ®nding novel RNAs are limited to small
or known RNA families. To expand known RNA
structural motifs, we develop a two-dimensional
graphical representation approach for describing
and estimating the size of RNA's secondary struc-
tural repertoire, including naturally occurring and
other possible RNA motifs. We employ tree graphs
to describe RNA tree motifs and more general (dual)
graphs to describe both RNA tree and pseudoknot
motifs. Our estimates of RNA's structural space are
vastly smaller than the nucleotide sequence space,
suggesting a new avenue for ®nding novel RNAs.
Speci®cally our survey shows that known RNA trees
and pseudoknots represent only a small subset of
all possible motifs, implying that some of the
`missing' motifs may represent novel RNAs. To help
pinpoint RNA-like motifs, we show that the motifs
of existing functional RNAs are clustered in a
narrow range of topological characteristics. We also
illustrate the applications of our approach to the
design of novel RNAs and automated comparison of
RNA structures; we report several occurrences
of RNA motifs within larger RNAs. Thus, our graph
theory approach to RNA structures has implications
for RNA genomics, structure analysis and design.

INTRODUCTION

RNA's expanding repertoire

RNA molecules are integral components of the cellular
machinery for protein synthesis and transport, transcriptional
regulation, chromosome replication, RNA processing and
modi®cation, and other fundamental biological functions
(1±3). Current research continues to provide growing evidence
for RNA's important roles in regulating protein-coding genes
(4) and catalysis (5±8). The expanding list of RNA's repertoire
is stimulating research in RNA genomics or ribonomics (9),
the large-scale characterization and analysis of RNA struc-
tures and functions (10,11). A central goal in ribonomics is

to determine all the distinct structural motifs or three-
dimensional (3D) folds. Unlike proteins, not many distinct
functional RNA classes are currently known (2,5,12); for
example, the Nucleic Acid Database (13) (NDB, http://
ndbserver.rutgers.edu/NDB/) and The RNA Structure
Database (www.rnabase.org) reveal, as of April 2003, ~600
3D-RNA structures representing only about 20 major func-
tional classes (Table 1).

Current computational efforts in the identi®cation of RNA-
coding genes in genomesÐi.e., DNA sequences that are
transcribed into RNAs but do not encode proteinsÐare,
however, limited to variants of known RNA classes (e.g.,
transfer and ribosomal RNAs) (14); a few potentially novel
RNAs have also been identi®ed in recent works (15,16).
Finding novel RNA sequences in genomes is challenging
because the start and stop codons that specify protein genes are
not present in RNA genes (1,16); thus, RNA genes must be
found based on sequence or structural homology to existing
RNAs using programs like tRNAscan-SE, FAStRNA and
Snoscan (14,17,63), for example. Another factor affecting the
progress of ribonomics is the small allocation of resources to
the RNA ®eld compared with proteomics.

As Tinoco and Bustamante opine in 1999, `If 10% of
protein fold researchers switched to RNA, the [RNA folding]
problem could be solved in one or two years' (19).
Interestingly, the authors argue that the hierarchical nature
of RNA folding, which implies that the two-dimensional (2D)
RNA fold is stable independently of its 3D fold, may make the
problem of predicting RNA tertiary structures more tractable
than that of proteins. Another advantage in RNA structure is
modularity, allowing assembly of different functional units, as
in rational design of ribozymes (catalytic RNAs) (20).

Finding novel RNAs

Besides computational approaches to ribonomics, novel RNAs
can be found using experimental in vitro selection of
functional RNAs from large (1015) random sequence pools.
Essentially, the RNA sequence space (4N nucleotide sequence
combinations for N nucleotides) is explored by various
strategies to select RNAs with novel functional properties,
such as binding to target molecules (ligands, peptides, drugs).
Such in vitro selection of functional nucleic acids has
advanced impressively our known range of RNA's functional
capabilities (21±26). The selected ribozymes and target-
binding RNAs (or aptamers) have potential applications as
molecular switches, molecular sensors and therapeutic agents
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(20,27,28). Still, large complex ribozymes >200 nt are dif®cult
to isolate from such random sequence pools due to the
diminishing probability of ®nding functional RNAs with
increasing sequence length (N) (23); this is because the size of
the sequence space (4N) rises exponentially.

Both the search for naturally occurring RNAs in genomes
and experimental selection of functional RNAs via in vitro
methods are complementary approaches for exploring the
space of RNA's structural/functional possibilities. From this
perspective, understanding RNA's structural possibilities is
likely to impact ribonomics and the search for novel RNA
structures. Broadly speaking, the objective of ribonomics is to
delineate the relationship among RNA sequence, secondary
topology, tertiary structure and function. Due to current
theoretical and experimental limitations (and, possibly, the
greater emphasis on protein genomics and design), the extent
of RNA's structural repertoire is not known. We conjecture
that the RNA structures available in current databases [e.g.,
NDB (13)] represent only a small subset of existing and
possible structures.

Exploiting graph theory for RNA description

Despite these limitations, the challenges of ribonomics and the
modularity of RNAs provide a fertile ground for new
conceptual and mathematical approaches, such as the graph
theory approach we introduce here. Indeed, there has been a
growing recognition that mathematics and computer science
provide promising tools for structural biology research.
Biologist Dennis Bray asserted recently that `Theory needs
to be embraced and to become part of the mainstream of
biological research. The quality and accuracy of predictions
will then inexorably rise' (29).

Speci®cally, to address some of the limitations of current
approaches to RNA structures, we develop a graph theory
approach combined with modeling and computational biology
tools for exploring RNA's secondary-structural repertoire. A

greater understanding of RNA's 2D structural repertoire will
provide important leads for the search for novel RNAs, since
RNAs with dissimilar 2D motifs generally have different
folded 3D structures and functions (9,10,15). To enumerate all
possible 2D motifs, we represent RNA secondary structures
schematically as planar graphs; we use tree graphs to represent
RNA tree structures and dual graphs to represent any RNA
secondary structures, including trees and pseudoknots. The
simpler tree representation allows exploitation of key graph-
theory results for RNA analysis, but a separate representation
is required for pseudoknots since these more complex
topologies cannot be represented as trees. (See
Supplementary Material for graph theory terms.)

RNA tree and dual graphs provide discrete representations
of 2D RNA motifs whose secondary elements (loops, bulges,
stems, junctions) are de®ned by graph vertices (d) and edges
(Ð). All possible 2D RNA motifs, both natural and hypo-
thetical, can be enumerated using such discrete graphical
representations. Although RNA tree graphs were developed
earlier by Le et al. (30) and Benedetti and Morosetti (31) for
identifying structural similarity between RNAs, our work
develops graphical representations for both RNA trees and
pseudoknots and describes RNA applications to 2D motif
enumeration, design and structural comparison.

The graph theory framework introduced here allows an
estimation of the size of RNA's structural repertoire and
immediately suggests a survey of RNAs in public databases
and the literature to determine existing and missing motifs.
Signi®cantly, we ®nd that about 35 distinct tree and
pseudoknot motifs in our enumerated sets exist in solved
RNAs but that many larger motifs are `missing'; this implies
that natural RNAs represent only a small subset of all possible
mathematically enumerated motifs. Some of the missing
motifs may thus represent undiscovered natural RNAs or
RNAs that may be generated synthetically in the laboratory,
while others may correspond to energetically unfavorable

Table 1. Survey of 3D structures of functional RNAs in NDB (http://ndbserver.rutgers.edu/NDB/index.html);
small RNA fragments are not included

NDB code RNA

TRNA12 tRNA
PRV022 RNA pseudoknot inhibitor complexed with HIV-1 reverse transcriptase
Ribozyme structures
UR0003 Large subunit (LSU) ribosomal RNA group I intron
UR0019 Group II self-splicing intron
URX053 P4-P6 RNA ribozyme domain
URX057 RNA hammerhead ribozyme
PR0005 HDV genomic ribozyme
PR0038 Hairpin ribozyme
Single stranded RNA
UR0004 Ribosomal frameshifting viral pseudoknot
UR0018 JIIIabc RNA Tertiary Domain
Structural RNAs
PR0041 Signal recognition particle RNA
Ribosomal RNAs
PR0018 5S ribosomal RNA
RR0003 70S ribosome functional complexes
RR0006 16S ribosomal RNA
RR0011 Domain V of 23S ribosomal RNA
RR0017 30S ribosomal subunit
RR0031, RR0032 Ribosome at 5.5 AÊ resolution
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motifs. These possibilities pose intriguing experimental and
theoretical challenges for the systematic search of novel RNAs
guided by enumerated topologies.

The RNA graphical representations further suggest three
important applications: clustering of functional RNA classes,
®nding RNA motifs within substructures of larger RNAs and
designing novel 2D RNA motifs.

Our clustering plot shows that existing RNAs are sparsely
distributed within a narrow range of the possible topological
characteristics (e.g., degree of secondary-structural branch-
ing). This observation can be interpreted in terms of
physiochemical factors.

Our application of graph isomorphism to ®nd smaller RNA
motifs within larger RNAs reveals many occurrences of small
RNA motifs (e.g., 5S ribosomal RNAs) within larger RNAs,
such as 16S and 23S ribosomal RNAs, as expected, but also
unexpected relations, such as the hepatitis delta virus (HDV)
RNA motif within tmRNA (an RNA involved in protein
biosynthesis). Such a computationally ef®cient method (and
an alternative to manual inspection) of establishing structural
relationships among existing RNAs is valuable for under-
standing the modularity of RNA for design applications.

Finally, we develop a procedure for designing novel RNA
motifs using missing motifs, modular assembly of existing
RNA subunits and 2D RNA folding algorithms (18,32), as the
®rst step in the search for novel functional RNAs.

Article outline

The remainder of this article is organized as follows. In the
next section, Concepts and Methods, we introduce the basic
elements of graph theory representation and analysis of RNA
structures. The Results section consists of the following parts:
estimating the size of RNA space; survey of existing RNA
topologies; clustering functional RNA classes; RNA substruc-
ture analysis; and search for novel RNAs: design and
prediction. We conclude with a summary of this work. We
elaborate in the Appendix upon: (A) the relationship between
tree and dual graphs; (B) the limitations of graphical
representations; (C) the algebraic properties of RNA topolo-
gies; and (D) an algorithm for ®nding structurally similar RNA
graphs. The Supplementary Material contains a glossary that
de®nes various terms in RNA structure and graph theory. The
database we develop (RAG, for RNAs As Graphs) will be
available on our group's web site (please check monod.
biomath.nyu.edu).

CONCEPTS AND METHODS

This section provides a brief background on RNA secondary
structures (some of which is well known to biologists but
possibly unfamiliar to mathematical researchers interested in
this work), as well as available 2D folding algorithms, and key
concepts in graph theory which we use to describe and analyze
RNA structures. We then introduce the tree and dual graph
rules for representing RNA secondary structures, and present
graph-theory enumeration formulas.

RNA secondary structures and folding algorithms

RNA biopolymers are made of four nucleotide bases denoted
by letters A, C, G and U. The linear RNA chain molecule,
running from a 5¢ to a 3¢ end, each distinguished chemically,

can fold upon itself to form (2D) secondary and tertiary (3D)
structures. An RNA secondary structure refers to a network
of structural motifs such as helical stems, loops, bulges and
junctions (Fig. 1). RNA stems are self-complementary
base-paired regions (e.g., AU, UA, GC, CG), whereas loops
and bulges are regions in the double-stranded RNA with
mismatched (e.g., AG, UC) or unmatched (unpaired) bases;
RNA junctions are constructs where two or more stems meet,
and they usually contain unmatched bases (see details in
Fig. 1). The overall molecular architecture of the secondary
structure is stabilized by Watson±Crick (GC and AU) and
other (e.g., GU wobble) base pairing motifs (33).

The secondary structural motifs, aided by the presence of
ions, can interact to form 3D folds of biologically active
(functional) RNA molecules (33±36). These interactions
produce a complex hierarchical relationship between second-
ary and tertiary structures (see Fig. 2D). According to the
hierarchical view of RNA folding (19), the secondary structure
is stabilized relatively fast and is followed by slow folding of
the tertiary structure, which can take minutes or longer (37).

RNA trees and pseudoknots are two major types of 2D RNA
secondary structures, distinguished by the topology of their
base pairing patterns. An RNA tree is a branching network of
helical stems interrupted by bulges and junctions that end in
loops, except at the 3¢ and 5¢ ends. An RNA pseudoknot has a
stretch of nucleotides within a hairpin loop that pairs with
nucleotides external to that loop (38). More precisely, a
pseudoknot forms when a consecutive single-stranded domain
with segments a, a¢, b, b¢, c, c¢, and d (a¢, b¢, and c¢ are
connectors) fold to form two regions with Watson±Crick base
pairing: a with c, and b with d (see Fig. 2A).

RNA secondary structures can be predicted from sequence
using folding algorithms. Available programs based on
dynamic programming algorithms (e.g., MFOLD and
PKNOTS) predict base pairing patterns, the presence of
base-pair mismatches, and regions with unpaired bases.
Optimal solutions are obtained by minimizing the overall
RNA free energy on the basis of experimentally derived free
energy parameters for base pairs (39). For RNA tree
structures, the widely used 2D folding algorithm by Zuker
and coworkers (32,39) (MFOLD) is available at http://
bioinfo.math.rpi.edu/~zukerm/. Other related 2D RNA pre-
diction algorithms have been developed by McCaskill (40),
Wuchty et al. (41) and Rivas and Eddy (PKNOTS) (18).
Notably, PKNOTS can predict small (<100 nt) pseudoknots, a
capability lacking in other RNA folding programs; the
computational cost of predicting large pseudoknots (>200 nt)
is generally prohibitive (18). In our work, we use MFOLD and
PKNOTS to predict small tree and pseudoknot structures; data
for larger structures are taken from experimentally solved
structures available in databases and the literature.

Basic aspects of graph theory

Since RNA secondary structures are essentially 2D networks,
they may be represented using planar graphs to facilitate
analysis of RNA structures; indeed, modeling network motifs
using graphs has proven to be fruitful for many complex
systems in biochemistry, neurobiology, ecology and engin-
eering (42,43). Such ideas have also been previously applied
to characterize and compare RNA structures at the base pair
(44) and secondary-structural (30,31) levels.
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Graph theory is a branch of mathematics that deals with
con®gurations described by nodes and connections. The
con®gurations may represent physical networks, such as
electrical circuits or chemical compounds (45), where atoms
and bonds are modeled as nodes and connections, respect-
ively. Formally, such con®gurations are modeled by graphs
consisting of vertices or nodes (d) and edges or lines (Ð),
which connect the vertices. In our work, we use exclusively
planar graphs whose vertices and edges are drawn in a 2D
plane.

Figure 3 shows examples of tree (Fig. 3A) and non-tree
(Fig. 3B) planar graphs. These are connected graphs since
every pair of vertices in the graph is connected by one or more
paths; a path is a `walk' from a vertex to another with no
repeated edges or vertices. A tree is a connected graph whose
vertex connections do not form closed paths (e.g., no
triangles). Hydrocarbon molecules, such butane and iso-
butane, can be represented using trees or tree graphs. In fact,
the use of tree graphs to count possible hydrocarbon
structures played a signi®cant role in the development of

Figure 1. RNA secondary structural elements: junctions, stems, loops and bulges. The double-strands (black) of RNA stems are stabilized by complementary
base pairs (e.g., AU, GC, GU), shown schematically as green lines. The number of unmatched bases (e.g., A, C, U, or G, red lines) and mismatched base
pairs (e.g., AG, GA, AC, CA, red lines) in junctions, bulges and loops can vary. Several types of RNA junctions (two-, three- and four-stem) and internal
loops (symmetric and asymmetric) are illustrated.

Figure 2. (Left) Dual graph representations of existing RNAs. Schematic 2D pseudoknots (top) and their planar dual graph representations (bottom) for
(A) simple pseudoknot con®guration (with labeled segments a±d), (B) class III ligase ribozyme and (C) HDV ribozyme. Pseudoknots (B) and (C) are proto-
type ribozymes engineered by Schultes and Bartel (59). The lower panel shows the 3D tertiary structure, 2D secondary structure and schematic 2D dual graph
representation of HDV ribozyme (PDB no. 1DRZ). The HDV ribozyme has two pseudoknots in regions P1/P2 and P1.1/P3. (Right) Comparing dual (column
F) and digraph (G) representations of hypothetical RNA secondary structures (E). Digraphs are graphs whose edges have ¯ow directions. The ambiguities in
representing the topology of RNA secondary structures using dual graphs are resolved by employing digraphs; however, the topologies of single-stem
structures (rows 1 and 2 of column E) cannot be differentiated by both dual and digraph representations.
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graph theory through the graphical enumeration theorem of
A. Cayley (46). We will exploit this and other tree
enumeration theorems to count RNA's topological motifs
(see section below on enumeration of RNA graphs). For RNA
pseudoknots, non-tree graphs are required to describe their
complex patterns of connectivity involving closed paths or
faces (Fig. 3B).

Graphical representation of RNA structures

Unlike graphs for chemical structures, where atoms are
vertices and bonds are edges, our RNA graphs are RNA
secondary topologies where a vertex or an edge can represent
multiple nucleotide bases or base pairs, which are themselves
composed of multiple atoms and bonds. To allow graphical
representation of complex RNA secondary topologies, we
state below rules for de®ning RNA graphs and provide
justi®cations for these rules. The rules specify how to
represent RNA loops, bulges, junctions and stems as vertices
or edges in a graph. Essentially, the tree and dual graph rules
simplify RNA secondary motifs to allow their representation
as mathematical graphs; the `RNA graphs' specify the skeletal
connectivity of the secondary motifs.

We use tree graphs to represent RNA trees and dual graphs
to represent any RNA secondary structures, including trees
and pseudoknots, since pseudoknots cannot be represented as
trees. Still, the tree representation is advantageous because of
its intuitive appeal and the existence of applicable tree
enumeration theorems, especially those by Cayley and by
Harary and Prins (47,50). In the Appendix, we elaborate on the
relationship between tree and dual representations (A) and the
limitations of graphical representations (B).

Planar tree graph rules. To represent RNA trees as planar
graphs, we use the following rules to assign edges and vertices.

T1. A nucleotide bulge, hairpin loop or internal loop is
considered a vertex (d) when there is more than one
unmatched nucleotide or non-complementary base pair. The
special case of the GU wobble base pair is regarded as a
complementary base pair.

T2. The 3¢ and 5¢ ends of a helical stem are considered a
vertex (d).

T3. An RNA stem is considered an edge (Ð); we de®ne an
RNA stem to have two or more complementary base pairs.

T4. An RNA junction is a vertex (d).

As shown in Figure 4, the above rules reduce the 2D
structures of single-strand RNA, transfer RNA (tRNA), and 5S
ribosomal RNA (rRNA) to tree graphs.

Note that we consider the 3¢ and 5¢ ends of a double-
stranded helical stem as a vertex (d). This assignment of the
ends of a stem is required because graph theory stipulates that
an edge must join two vertices or a vertex to itself. Not all stem
ends are the same, however. In some cases, the 3¢ end is part of
a ¯exible single-stranded region (see Fig. 4). This and other
variations of RNA stem ends are not captured by our vertex
representation. In rule T2 above, when the 3¢ and 5¢ ends of an
RNA structure do not belong to the same helical stem, the
RNA cannot be represented as a tree. For such cases, we use
the dual graph rules discussed below.

In our tree graph rules T1±T3, we have de®ned for physical
reasons the minimal numbers for matched, mismatched or
unmatched base pairs: >1 bp mismatch for a vertex and >2 bp
matches for an edge. Our vertices (d)Ðwhich represent
unmatched nucleotides or mismatched (non-complementary)
base pairs (e.g., AG, AC and CU)Ðcould participate in base
pairing with unpaired bases in other parts of the RNA
molecule through tertiary interactions, as in kissing hairpin
and bulge-loop motifs (33). Such interactions stabilize 3D
RNA structures, and they usually involve more than a single
base pair (33). Rule T1Ðthat RNA graph vertices represent
more than one unmatched nucleotide or non-complementary
base pairÐre¯ects these signi®cant features of RNA structure
and interaction. Thus, RNA bulges, loops and junctions, which
we represent as vertices, are determinants of RNA interaction,
¯exibility and tertiary structure.

Rule T3 requires that RNA stemsÐwhich are represented
as edges (Ð)Ðhave a minimum of two complementary base
pairs; generally, RNA stems can have anywhere from two to
dozens of base pairs. A minimum of two base pairs ensures
that the RNA stem is stable against thermal ¯uctuations
(~0.6 kcal/mol at room temperature). Formation of a single
base pair can interrupt a loop region, but such an isolated base
pair may be unstable thermodynamically. We regard such a
con®guration as a loop region, which is represented as a vertex.

Certainly, our tree graph rules (T1±T4) may be modi®ed as
necessary to re¯ect other desired features of RNA structure;
the simpler they are, the smaller the topological space implied
by them. The more complex labeled RNA tree graphs of

Figure 3. Basic concepts of tree and dual graphs. (A) Three ®ve-vertex
planar tree graphs (the middle graph is labeled); (B) three two-vertex
non-tree graphs. A planar graph is a set of nodes or vertices (d) and a set of
line segments or edges (Ð) in a plane where each of the segments either
joins two vertices or joins a vertex to itself. In a labeled graph, the graph
vertices are labeled, as in the middle graph of set (A). Graphs with no
vertex labels are called unlabeled graphs. Graphs in sets (A) and (B) are
connected graphs since all vertices are linked. The tree and non-tree graphs
are distinguished by the absence/presence of closed paths (faces), where a
path is a `walk' between vertices with no repeated edges. A tree is a
connected graph with no closed paths. The non-tree graphs in (B) are also
connected graphs, but closed paths between vertices are present in these
graphs; the closed paths are the self-loops and multiple (two or more) edges
connecting two vertices. The edges incident on, or emanating from, a vertex
are called incident edges. For example, vertex 3 of the middle graph of set
(A) has three incident edges; vertex 2 has two incident edges and vertices 1,
4 and 5 each have one incident edge. In set (B), a self-loop of a vertex
counts two incident edges. For example, each vertex of the right graph of
set (B) has three incident edges.
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Le et al. distinguish various types of loops, bulges, junctions
and stems (30).

Planar dual graph rules. To represent trees, pseudoknots and
other RNA secondary topologies as planar graphs, we use the
following general rules.

D1. A vertex (d) represents a double-stranded helical stem.

D2. An edge (Ð or Ç) represents a single strand that may
occur in segments connecting the secondary elements (e.g.,
bulges, loops, junctions and stems).

D3. No representation is required for the 3¢ and 5¢ ends.

Implicit in the above rules is the requirement that a stem has
two or more complementary base pairs and a bulge has more
than one unmatched nucleotide or non-complementary base
pair, as in tree-graph rules T1±T4. In contrast to tree-graph
rules, a vertex (d) now represents a stem instead of a bulge/
loop/junction, and an edge (Ð or Ç) represents a strand in
bulge/loop/junction instead of a stem; we elaborate upon the
relationship between tree and dual graphs in Appendix A; see
Table 2.

Figure 4. Schematic graphical representations for three RNA secondary topologies computed using Zuker's MFOLD algorithm (54) (top row). For these
RNAs, our two types of graphical representations are shown: tree (middle row) and dual (bottom row) graphs. We use corresponding labels (B0, B1, etc. and
S1, S2, etc.) on the secondary structures and graphs to denote the secondary structural elements that are represented as vertices (d) or edges (Ð or Ç); B0,
denoting chain ends, is not represented in dual graphs. Note that the vertices and edges in tree and dual graphs represent different RNA secondary elements
(see Table 2). In tree graphs, unmatched base pairs are represented as vertices and helical stems are edges. In contrast, in dual graphs, the unmatched base
pairs are considered as edges and the vertices are helical stems. For all RNA graphs, the numbers L (loops plus bulges), J (junctions) and S (stems) obey a
simple relation, L + J = S, derived from Euler's formula (60) in algebraic topology (see discussion on algebraic properties of RNA topologies in Appendix
C). The validity of the formula is illustrated for the three RNA topologies shown. The NDB codes are given for all structures (ndbserver.rutgers.edu/NDB/
index.html). Other examples of RNA tree graphs are shown in Figure 7.
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We call the RNA graphs drawn using the above rules
(D1±D3) dual graphs. Figure 2 shows the RNA secondary
structures of four pseudoknots and their corresponding dual
graphs: (A) a simple pseudoknot, (B) class III ligase ribozyme
(engineered), (C) HDV ribozyme (engineered) and (D) HDV
ribozyme (PDB no. 1DRZ).

RNA secondary structures represented as dual graphs have
speci®c connectivity properties. A double-stranded RNA stem
is connected to at most two strands on either ends for a total of
four strands. This means that the maximum number of incident
edges at any vertex (i.e., edges emanating from a vertex, see
Fig. 3) of a dual graph is four, except for one or two vertices
which may have two or three incident edges. The vertices with
two/three incident edges indicate where one/both ends (3¢ and
5¢) is/are located. If two vertices have less than four incident
edges, both must have three incident edges. On the other hand,
if all vertices have four incident edges except one, that vertex
must have two incident edges. These properties imply a total
of 2V ±1 edges for any V-vertex RNA dual graph.

The dual graph rules for RNAs with double-helical stems
can be generalized to allow enumeration of RNAs with triple
or quadruple helices. This generalization is important because
RNA and DNA triple helices are found in nature (48,49).
Another generalization of dual graph is to use the more precise
directed graphs or digraphs RNA representation. The advan-
tages of digraphs are discussed in Appendix B. Bri¯ey,
digraphs specify the ¯ow directions of edges which can
resolve ambiguities in the dual graph representation.

Enumeration of RNA graphs

To estimate the size of RNA's structural space and to aid in
®nding new RNA folds, we now consider the enumeration of
tree and dual graphs. Speci®cally, we seek to describe all
possible RNA topologies (NV) for a ®xed number of vertices
(V); the number of vertices is a measure of RNA chain length.

Enumeration of RNA tree graphs. The number of possible
RNA graphs (NV) for a given number of vertices (V) can be
counted using tree enumeration theorems of Cayley for
labeled trees (46) and Harary±Prins for unlabeled trees (trees
with equivalent vertices) (46,47,50). These theorems are
cornerstones in the subarea of graph theory that deals with
graphical enumeration. Labeled trees refer to graphs with
labeled vertices, as illustrated in Figure 3; graph vertices are
not labeled in an unlabeled graph. Enumeration of unlabeled
trees considers the number of non-isomorphic graphs, i.e.,
topologically distinct trees irrespective of the vertex identity.
The labeled trees, on the other hand, allow distinction of
speci®c bulges, loops, junctions and ends in RNA graphs. Both

Cayley and Harary±Prins approaches are relevant to the
counting of RNA's structural repertoire.

The number of labeled trees for any V is given by the
Cayley formula (46)

NV = VV ± 2. 1

For unlabeled trees, Harary and Prins obtained the counting
polynomial t(x) (47,50) whose coef®cient NV is the number of
distinct graphs with V vertices:

t�x� �
X1
V�1

NV xV

� T�x� ÿ 1

2

�
T2�x� ÿ T�x2��; 2

where

T�x� � x exp
X1
r� 1

1

r
T�xr�

" #
: 3

The counting polynomial (equations 2 and 3) up to the ®rst 12
terms is

t(x) = x + x2 + x3 + 2x4 + 3x5 + 6x6 + 11x7 +
23x8 + 47x9 + 106x10 + 235x11 + 551x12 + ¼ 4

In this polynomial, the coef®cients of the ®rst, second and
third terms, for example, indicate that there is only one distinct
graph each for V = 1, 2 and 3; the Harary±Prins enumeration
polynomial is derived based on the PoÈlya±Burnside method
(51,52). Clearly, the number of distinct graphs (NV) as a
function of vertex number according to Cayley's formula (1)
for labeled trees grows faster than Harary±Prins's formula (2)
for unlabeled trees.

Based on the counting polynomial (equation 4), we can
estimate the number of distinct secondary motifs for a given
RNA size. Since a tree edge roughly corresponds to 20 nt, a
tree with six vertices (®ve edges or 100 nt) has six possible
motifs, whereas an 11-vertex (10 edges or 200 nt) tree has 235
possible motifs. As the RNA size increases from 100 to 200 nt,
the number of possible motifs increases by a factor of 39,
indicating the potential of large RNAs to form many more
novel secondary motifs.

Enumeration of RNA dual graphs. The enumeration of dual
graphs, unlike trees, simultaneously yields tree, pseudoknot
and other possible topological motifs as de®ned by the dual
graph rules (D1±D3). We have heuristically enumerated all
such graphs for the cases of V = 2, 3 and 4, which correspond
to 3, 8 and 30 possible dual graphs, respectively (Fig. 5). In
addition to RNA trees (T) and pseudoknots (P), enumerated
motifs in Figure 5 reveal graphs involving single-edge
connectors; we call such motifs bridge graphs (B) or simply
bridges. Bridges are biologically important since they suggest
existence of independent RNA submotifs and thereby help in
the modular design of RNAs. Examples of RNA bridges are
box H/ACA snoRNA, hepatitis C virus (HCV) RNA and
group I intron (Fig. 6).

RNA trees, pseudoknots and bridges can be categorized as
topological types differentiated by the order of connectivity
between the vertices or, as known in graph theory, the edge-
cut property; an edge-cut is a set of edges whose removal

Table 2. Representation of edges and vertices in tree and dual graphs of
2D RNA motifs

Secondary
motif

Tree graph Dual graph

Stem Edge (Ð) Vertex (d)
Loop/bulge Vertex (d) Edge (Ð or Ç)
Junction A vertex with >3 incident edges A face with >3 vertices
3¢, 5¢ ends Vertex (d) Not represented
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results in a disconnected graph. RNA trees are characterized
by minimal edge-cuts with two edges; RNA pseudoknots have
at least a minimal edge-cut with three edges (e.g., Fig. 2A);
and RNA bridge graphs become disconnected graphs upon
removal of an edge (or unpaired RNA strand), a property

known in graph theory as one-edge-connected graph. A bridge
graph can also be a pseudoknot because it can contain a
pseudoknot subgraph. However, some existing RNA bridges
have no pseudoknot subgraphs, for example, bulged hairpin,
box H/ACA snoRNA and viral frameshift RNA (green graphs

Figure 5. All possible topologies for RNAs represented by dual graphs having 2, 3 and 4 vertices. There are three types of graphs in each set: tree (T),
pseudoknot (P) and bridge (B). Each graph is index by (V, i) where is V is the number of vertices. We color the existing RNA trees, pseudoknots and bridges
in these graphs as blue, red and green, respectively. The existing RNA trees are: (2,1)Ðsingle strand RNA (NDB code PTR016), (3,1)Ðsingle strand RNA
(NDB code PR0055), (4,14)Ð70S(F), (4,15)ÐP5abc, and (4,19)ÐtRNA; the existing RNA pseudoknots are: (2,2)ÐSimian Retrovirus type-1, (3,3)ÐP3/P7
pseudoknot of the Tetrahymena ribozyme, (3,4)ÐtmRNA pseudoknot 2 (Pk2) of Escherichia coli, (4,18)ÐtRNA-like structure bulge pseudoknot
(PSEUDOBASE no. PKB143), (4,20)Ðviral frameshift (PSEUDOBASE no. PKB174), (4,21)Ðclass III ligase ribozyme (engineered), (4,23)Ðpseudoknot
E23±9/12 of 18S ribosomal RNA (PSEUDOBASE no. PKB205), (4,25)Ðpseudoknot PK1 of Legionella pneumophila tmRNA (PSEUDOBASE no. PKB67),
(4,26)Ðpseudoknot of signal recognition particle RNA (PSEUDOBASE no. PKB163); and the existing RNA bridges are: (2,3)Ðbulged hairpin (analog of
pAT1), (4,8)Ðbox H/ACA snoRNA, and (4,13)Ðviral frameshift RNA (PSEUDOBASE no. PKB217).
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in Fig. 5). Thus, dual graphs describe three topological RNA
types: tree (edge-cut with two edges), pseudoknot (edge-cut
with three edges), and bridge (one-edge-connected); see
Figures 5 and 6.

The distribution of tree, pseudoknot and bridge types in V =
2, 3 and 4 motif sets is as follows. For the V = 2 motif set, three
graphs correspond to one tree, one pseudoknot and one bridge;
for V = 3 set, eight graphs correspond to two trees, three
pseudoknots and three bridges; and for V = 4 set, 30 graphs
include four trees, 20 pseudoknots and 13 bridges (thus seven
graphs are both pseudoknots and bridges). These enumeration
results imply that the number of bridges (NV

bridge), trees (NV
tree),

and pseudoknots (N
V
pseudo) within a given topological set

follow:

N tree
V � N

bridge
V � N

pseudo
V : 5

The complexity and number of the dual graphs increase
quickly with vertex number, making it non-trivial to determine
the number of topological possibilities for a given V. General
enumeration theorems for RNA dual graphs are not available.

RESULTS AND DISCUSSION

Estimating the size of RNA space

The possibility to enumerate 2D RNA motifs provides a
unique tool to estimate the size of RNA's structural repertoire
or the RNA space. Even though we do not expect most
enumerated graphs to lead to natural RNAs, some motifs will
certainly be naturally occurring or theoretically possible to
generate in the laboratory. Those that are likely to be
unphysical may be excluded by geometric, energetic and
functional considerations. Thus, enumerating RNA motifs will
provide an upper bound of the number of possible unique 3D
RNA structures or functions. Below, we compare the RNA
sequence space with estimates of the RNA topology space
from Cayley and Harary±Prins tree enumeration formulas; we
also discuss the implications of these results.

For an RNA of sequence length N, the sequence space size
is 4N. Since a vertex in RNA graphical representation
corresponds to ~20 nt (based on our survey of existing
RNAs), sequence space grows with vertex number as 420V.
Hence, the sequence space (420V) is much larger than the tree
topology space (NV): 420V >> NV, whether NV is counted using
Cayley's formula (VV ± 2) (46) or using Harary±Prins's formula
(47), which can be approximately parametrized as 2.5V ± 3 for
V > 3; we obtain the dependence of these estimates on
sequence length by setting V = N/20.

Figure 7B shows that the sequence space is signi®cantly
larger than Cayley's topology space, which in turn is larger
than Harary±Prins's topology space. For example, for V = 10
or N » 200, the sequence space contains 4200 = 2.6 3 10120

elements whereas topology space contains 106 trees
(Harary±Prins) or 108 labeled trees (Cayley). Clearly, the
RNA topology space is vastly smaller than the sequence space
because many sequences can fold to the same topology;
Reidys et al. (53) have estimated the number of sequences
having a given secondary structure varies as 0.673 N3/2 2.164N.
The small dimension of the RNA topology space implies an
advantage in the search for novel RNAs. For example, rather
than exploring the (random) sequence space, as in current
in vitro selection technology for functional RNAs, we suggest
searching for new RNA folds or functions corresponding to
selected novel 2D motifs from enumerated repertoire.

Survey of existing RNA topologies

The enumeration formulas above provide theoretical bounds
on the number of possible RNA topologies for our graphical
representations. To determine how many of these topologies
are represented by natural RNAs, we survey existing RNA
sequences and structures in public databases and the literature.

Figure 6. Upper panel: RNA pseudoknot topologies for 5 < V < 17 found
in the literature and the PSEUDOBASE database (wwwbio.LeidenUniv.nl/
~Batenburg/PKBGet.html#s3). (The pseudoknots for V < 5 are listed in
the enumerated sets in Fig. 5.) For V = 5, the pseudoknots found are:
(a) attenuator pseudoknot of the hammerhead ribozyme (PSEUDOBASE no.
PKB173); (b) class III ligase ribozyme (engineered) (59); (c) HDV ribo-
zyme (PDB no. 1DRZ); (d) HDV ribozyme (`Italy' variant; PSEUDOBASE
no. PKB75); (e) dicistronic cricket paralysis virus RNA (PSEUDOBASE
no. PKB223); and (f) viral tRNA-like of alfalfa mosaic virus
(PSEUDOBASE no. PKB191). The pseudoknots with V > 5 are: broad bean
mottle virus tRNA-like (V = 6, PSEUDOBASE no. PKB135); brome mosaic
virus tRNA-like (V = 7, PSEUDOBASE no. PKB134); tmRNA (V = 16)
(61); and RNase P RNA (V = 17) (62). Lower panel: survey of RNA bridge
motifs in the literature. The RNAs found are: (A) box H/ACA snoRNA;
(B) hTR (bases 211±451); (C) Neurospora VS ribozyme; (D) HCV;
(E) U19H; and (F) group I intron. The isomorphic subgraphs of (A) and
(B) are shaded blue; the pseudoknot subgraphs of (D) and (F) are shaded
green.
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Existing RNA structures can also be used to develop criteria
for discriminating RNA-like from non-RNA motifs.

To describe RNA secondary motifs, we employ experi-
mental secondary structure information where available, and
2D folding algorithms [e.g., MFOLD (54) and PKNOTS (18)]
where necessary, to determine small RNA topologies from
sequences. Such algorithms are expected to be reliable for
small RNAs (<100 nt) (55); minor errors (e.g., in the size of
stems, loops, bulges) in the predicted 2D structures should not
affect our survey, which deals with global topological
characteristics. Except for small RNAs (<100 nt), no effective
prediction algorithms are available for folding pseudoknots
from sequence. Thus we use published experimental
structures for pseudoknots. Many of our experimental
structures are RNAs in the NDB (see Table 1), which archives
3D RNA structures (2D motifs), sequences from 5S rRNA
(http://rose.man.poznan.pl/5SData/) and PSEUDOBASE
(http://wwwbio.leidenuniv.nl/~EBatenburg/PKB.html) for
pseudoknots.

Existing RNA trees. We present our ®ndings of the existing
RNA trees together with missing trees for V < 8 in Figure 7.
We found eight distinct RNA trees (red images) representing
small RNAs (e.g., tRNA, 70S RNA, 5S rRNA, RNA in signal
recognition and P5abc domain of group I intron); not shown is
the large 23S rRNAs with V >> 8. Except for the smallest trees
(V < 4), we immediately see that many distinct motifs are not
found in RNA databases.

Speci®cally, the V = 2, 3 and 4 trees are represented by
fragment or single strand RNAs. All three motifs for V = 5 are
found: in tRNAs (NDB code TRNA12), P5abc domain and the
70S ribosome unit (NDB code RR0003). Only the RNA in
signal-recognition complex NDB code PR0021 is represented
in the set of six possible topologies for V = 6; only one of the
total 11 motifs in the V = 7 set is represented, by 5S rRNA.
Thus, while we ®nd that several possible topologies are found
in RNA databases, many others are not. As V increases, the
number of possible trees increases rapidly and the number
`missing' motifs is expected to be larger. We are currently

Figure 7. (A) Enumerated tree topologies or motifs having up to seven vertices (V). The motifs represented by existing RNAs in the literature and databases
(NDB, http://ndbserver.rutgers.edu/NDB/index.html; 5S, http://rose.man.poznan.pl/5SData/) are shown in red; the missing motifs are in black. (B) Comparison
of the number of tree graphs from Cayley and Harary±Prins enumeration formulas (equations 1 and 4). Also compared is the expected number of sequences
in the random sequence space as a function of vertex number (dashed line); we estimated that ~20 bases represent an edge in an RNA graph. The plots clearly
show that selection of RNAs from random-sequence libraries is hampered by the rapidly rising sequence space with RNA size. In contrast, the number of
RNA topologies is much smaller, especially with the Harary and Prins formula.
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compiling such a topology database as a tool for cataloging,
analyzing and identifying RNA sequences with similar
topologies and/or functions (J.Zorn et al., unpublished).

Tree (and non-tree) motifs that correspond to real RNAs
have a moderate degree of branching: the number of edges
emanating from a vertex averages three or four, high-order
junctions (more than ®ve incident edges) found in large RNAs
(e.g., 16S and 23S rRNA, see Fig. 9) (6,7). Branching
promotes tertiary interactions between RNA secondary elem-
ents and reduces the entropic cost associated with folding into
compact 3D structures. This advantage of branching also
likely explains the absence of long `linear chain' topologies.
The rarity of high-order junctions may be explained by
unfavorable energetic considerations due to geometric or
steric factors. Their occurrence in large RNAs would thus
require stabilization by special tertiary interactions in other
parts of the molecule.

Existing RNA pseudoknots. We found a total of 22 distinct
pseudoknot topologies in the literature and the PSEUDO-
BASE database. The topologies found are distributed as
follows: nine for V = 2, 3, 4 (Fig. 5, red graphs); 12 for
V = 5 ± 18, 22 (Fig. 6, including D and F); and one for 16S
rRNA pseudoknot (V = 87) (Fig. 9). The only pseudoknot
topology for V = 2 is found in viral RNAs (e.g., actate
dehydrogenase-elevating virus, strain C, Berne virus, potato
leafroll virus, Porcine reproductive and respiratory syndrome
virus). Two out of four possible pseudoknot topologies for
V = 3 are found in pseudoknot of odontoglossum ringspot
virus (PSEUDOBASE no. PKB28) and Neurospora VS
ribozyme (PSEUDOBASE no. PKB178). For V = 4, we ®nd
six out of the 20 possible pseudoknot topologies, as shown in
Figure 5.

Thus, for V < 5 the number of pseudoknots found in nature
increases with the vertex number as predicted by our
theoretical enumeration of topologies. Topology enumeration
suggests there are many more pseudoknot motifs for V > 5.
However, our survey yields only six pseudoknots for V = 5 and
one each for V = 6, 7, 16 and 17 (Fig. 6). This situation partly
re¯ects our incomplete knowledge of pseudoknots and partly
because many possible pseudoknots likely do not exist in
nature.

Existing RNA bridges. Recall that bridge topologies are
biologically interesting since they de®ne modular units of
RNAs that may be exploited for RNA design. Figure 6A±F
displays six examples of naturally occurring RNA bridges
with 4±22 vertices that we have identi®ed. Among these
RNAs, the HCV and group I intron are also pseudoknots (their
pseudoknot substructures are shaded green in Fig. 6).

The four-vertex box H/ACA snoRNA motif in Figure 6A is
the bridge graph (4,8) in Figure 5 (green); this snoRNA has a
ACA trinucleotide and is involved in site selection for RNA
modi®cation by pseudouridine formation. Interestingly, the
box H/ACA snoRNA motif is a subgraph of human telomerase
(hTR) RNA (bases 211±451) in Figure 6B (shaded blue), and
they have similar functional properties (56). The largest bridge
graph is the group I intron (Fig. 6F); it has 22 vertices, four
bridge edges and a pseudoknot subgraph (shaded green). Of
the 30 enumerated dual graphs with four vertices (Fig. 5),
there are 13 bridge graphs, seven of which have pseudoknot

subgraphs. Thus, graphical enumeration alone suggests that
naturally occurring bridge graphs with pseudoknots may not
be rare.

Clustering functional RNA classes

Our topological characterization of RNAs provides an avenue
for cataloging or classifying RNA structures. Understanding
RNA topological characteristics can aid in identifying novel
RNA-like topologies as candidates for RNA design. To
describe the range of topological characteristics prevalent in
natural RNAsÐfor example, degree of branching, ratio of
loops to stemsÐwe perform a `clustering analysis' with dual
graphs to span both RNA trees and pseudoknots. We de®ne a
simple topological characterization of RNA graphs using the
number of vertices V and the number of `exterior' loops T
(including branches ending in loops and the chain ends)
[Though our `exterior loops' are called terminal loops in the
graph theory literature, we avoid the latter since it may lead to
confusion with RNA's chemical terminal (5¢ and 3¢) ends.]; for
example, the three RNA graphs in Figure 4 for an RNA single
strand, tRNA and 5S rRNA have two, four and three exterior
loops, respectively. For any dual RNA graph, T/V < 1. Since
we can derive the relation V = S = L + J from Euler's formula,
where S, L and J are, respectively, stem, loop/bulge and
junction numbers (equation 10 in Appendix C), and the set of
exterior loops (T) is a subset of all loops (L), i.e., T < L, the
following inequality holds:

T

V
� L

L� J
� 1: 6

This inequality de®nes the range of T/V [or L/(L + J)] in which
RNA topologies can be found, but it does not provide
information about the distribution of natural RNAs within the
domain.

Figure 8 shows a range of T/V combinations with ®lled
elements corresponding to existing RNAs. This map shows the
distribution or clustering of functional RNA classes according
to their 2D topological characteristics. For RNAs in 5 < V <
32, we ®nd that the T and V values lie in a narrow range
bounded by two lines of slope 0.55 (T has a range of 6 between
the lines). This limited range of T, V values for real RNAs
shows that RNAs tend to have a moderate degree of
branching; the constant T = 2 value corresponds to topologies
with no branching, and T/V ~ 1 indicates highly branched
topologies. RNAs with a high degree of branching are rare,
except for the small tRNA with T/V = 0.8; substructures of
large RNAs can also exhibit high branching structures. The 5S
rRNA, for example, has a low branching ratio of T/V = 0.43.

Within the observed range of T and V values (Fig. 8), there
are still many topologies with no RNA representation. These
topologies may represent possible RNA structures, some of
which are listed in our enumerated graphs (Figs 5 and 7).
Thus, the missing RNA topologies suggest a new way to
predict novel RNAs through RNA design and folding (see
section below), with more promising candidate motifs lying
within the typical range. Ideally, we would like to rank all
possible topologies for a given V in subgroups (e.g.,
starshaped trees) and provide the elements in increasing
likelihood to be natural RNAs. Our recent analysis of the
typical ratio of total unpaired to paired bases (0.75) and the

2936 Nucleic Acids Research, 2003, Vol. 31, No. 11



fraction of bases in stems, junctions, hairpin loops, and bulges/
internal loops based on ribosome structure (J. Zorn et al.,
unpublished) may be useful in this regard. We are pursuing
experimental/theoretical collaborations to exploit these RNA
design proposals.

RNA substructure analysis

Structural similarity can occur between RNA substructures
due to their common evolutionary origin. A known example is
the occurrence of smaller snoRNA motifs within the larger
hTR RNA structure, indicating a functional relation between
these RNAs (56). In proteins, the development of algorithms
for ®nding 3D substructure similarity has led to discoveries of
novel functional relationships and structural classi®cation of
proteins (57). However, ef®cient techniques for ®nding
structural similarity between RNAs are not well developed.

The topological framework described here offers a system-
atic way to search for similar substructures/submotifs in RNAs
through the concept of graph isomorphism; isomorphic graphs
are structurally equivalent graphs, i.e., those having the same
pattern of connectivity between vertices. Similarity search
techniques using graph isomorphism have already been used
for establishing relationships among chemical compounds
(45) and 2D RNA tree motifs (31). This approach may help
also identify structural, functional and evolutionary relation-
ships among RNAs that are not easily achieved by other
methods (e.g., sequence alignment). Below, we summarize the
concepts involved in the RNA graph comparison algorithm we
have developed and illustrate its applications with several
examples that reveal occurrences of RNAs within larger
RNAs. The algorithm is sketched in Appendix D and detailed
separately (S.Pasquali, H.H.Gan and T.Schlick, unpublished).

The mathematical task involves identifying a graph as a
subgraph of a larger graph or, in biological terms, an existing

RNA motif contained in a larger RNA. The computational
complexity of identifying two structurally equivalent (i.e.,
isomorphic) graphs with V vertices is directly related to the
number of ways the graph vertices can be labeled, which is of
the order of V factorial (V!). Thus, the brute force method for
®nding isomorphic graphs is prohibitive except for small
graphs (<10 vertices or RNAs with <200 nt). This is known as
the graph isomorphism problem (46). We have developed an
ef®cient method for testing graph isomorphisms based on
graph topological numbers or invariants, as elaborated in
Appendix D. Essentially, we associate each graph or subgraph
with one or more topological numbers, which are computed
based on the patterns of connectivity among graph vertices.
By this method, isomorphic graphs have the same
topological numbers while dissimilar graphs have different
topological numbers. The similarity or dissimilarity between
graphs can be thus established by comparing their topological
numbers.

Our computational scheme can compare graphs having up
to 40 vertices, or roughly corresponding to 840 nt RNAs. To
date, the largest RNA graph known, i.e., 23S rRNA, has ~160
vertices (3200 nt). Since the 23S rRNA is made of six domains
(7,6), its average domain has ~28 graph vertices (or ~560 nt).
Thus, a comprehensive search of topological similarities
among all major RNA classes can be performed by using
whole RNAs and RNA domains. Below, we present several
examples of the occurrence of RNA motifs within larger
RNAs found using such a computational search method.

Figure 9 shows occurrences of our three selected small
probe RNA topologies (<100)Ðsignal recognition RNA, 5S
rRNA and HDV ribozymeÐwithin larger target RNA
topologies: aepH, tmRNA, RNase P RNA, 16S rRNA and
23S rRNA. The search was performed using the general RNA
dual graph representation.

Figure 8. A 2D clustering map of functional RNA classes using their topological characteristics. Every RNA dual graph (tree, pseudoknot or bridge) has a
®xed number of vertices (V) and exterior (or terminal) loops T; we also count a helix ending in 3¢ and 5¢ ends as an exterior loop. We use V versus T plot to
map various functional RNA classes denoted by the letters: AÐtRNA; BÐ5S rRNA; CÐgroup I introns; DÐLSU rRNA; EÐnoncoding RNAs: Ecc
aepH, U19H, NTENOD40, BC200, U17HG; FÐRNA in signal recognition complex; GÐP5abc domain; HÐRNase P RNA; IÐ70S (F) RNA; JÐtmRNA;
K2Ðdomain II of 16S rRNA; and S1, S3, S4 are domains I, III and IV, respectively, of 23S rRNAs. No topologies are mathematically allowed in the T/V > 1
(shaded) region because the number of exterior loops exceeds the number of vertices. The dashed lines de®ne the boundaries within which functional RNAs
are found. The topologies for RNAs (A, B, ..., S3, S4) are obtained from experimental structures in the literature, except for the small 70S (F) RNA (denoted
by letter I) which is predicted using the MFOLD algorithm. Topologies with T = 2 are unbranched, whereas those with the T/V values close to 1 are highly
branched.

Nucleic Acids Research, 2003, Vol. 31, No. 11 2937



We ®nd that the 2D RNA motif of our ®rst probe, the
®ve-vertex signal recognition complex (NDB code PR0042),
occurs within the structures of aepH, tmRNA and RNase P
RNA; these RNAs are functionally different from each other

and from the probe RNA. In these matches, the probe RNA
and the substructures of larger RNAs have the same graph
connectivity, but the end (terminal) loops of stems may differ
because these loops do not contribute to our topological

Figure 9. Identi®cation of smaller RNA topologies (left panels) within larger RNA topologies (right panels, highlighted by thick green lines and broken/curly
blue lines) using a graph similarity search algorithm (Appendix D). Left panels also show the secondary topologies of the probe RNAs. The probe RNAs are
signal recognition complex RNA (NDB code PR0042), HDV ribozyme (NDB code PR0005), and 5S rRNA of S.cerevisiae; the larger RNA motifs (right
panels) are aepH (GenBank accession no. S74077), tmRNA, RNase P RNA, and 16S and 23S rRNAs of S.cerevisiae. The 2D structures of signal recognition
complex RNA and HDV ribozyme were predicted using the PKNOTS algorithm; the HDV fold differs slightly from crystal structure (64).
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number (see Appendix D). Further analyses by pair sequence
alignments between the probe and matched substructures of
larger RNAs do not reveal any signi®cant sequence similarity;
since the sequence identity is ~30 to 40%, these 2D structural
similarities may not be expected based on sequence compari-
son. These matches between small RNA motifs and RNA
subdomains are likely due to general architectural similarity.

The search for the occurrence of our second probe, 5S
rRNA, in the ribosomal 16S and 23S RNAs of Saccharomyces
cerevisiae (U53879, http://www.rna.icmb.utexas.edu), em-
ployed a partitioning of the 16S and 23S rRNAs into three
and ®ve domains, respectively, roughly according to domains
de®ned in the literature (6,7). The six-vertex 5S rRNA motif is
found in two of the three domains of 16S rRNA as well as
three of the ®ve domains of 23S rRNA. These ®ndings indicate
that the 5S rRNA is a common motif in the substructures of the
16S and 23S ribosomal RNAs.

As with alignment of 3D protein structures (57), the
signi®cance of the matches found in RNA topologies increases
with the size of RNA fragments or RNA graphs matched. The
probes (signal recognition RNA and 5S rRNA) are small
RNAs with simple topologies; each has a three-stem junction.
We expect the signi®cance of the matches found to also
depend on the complexity of the RNA secondary topology.
For example, a match involving a rare RNA topology is likely
to be signi®cant from a functional and evolutionary perspec-
tive. Ultimately, a statistical score quantifying the degree of
signi®cance is required. Such a score should incorporate
information about RNA size and topological complexity.

Surprisingly, for our third probe, HDV ribozyme, we ®nd a
match motif within the pseudoknot substructure of tmRNA;
our search among other RNA pseudoknots did not yield any
positive occurrence. Although the HDV ribozyme is a small
RNA (a 70 nt four-vertex graph), its topology is more complex

than the simplest pseudoknot. The simplest pseudoknot is
represented by two graph vertices and three edges (see Fig. 2),
whereas the HDV ribozyme has four vertices and six edges,
excluding the end loop (see Fig. 9). A sequence alignment of
the matched RNAs demonstrates a low sequence identity of
~35%. However, sequence alignment (not shown) indicates
that three base paired regions of the HDV ribozyme and
tmRNA have sequence segments that match perfectly, which
strongly suggests a close structural, functional or evolutionary
relationship between these RNAs. Our identi®cation of HDV
ribozyme motif in tmRNA warrants further experimental and
theoretical analysis.

The positive matches found by our graph isomorphism
technique could be a useful ®rst step in the analysis of RNA
structural and functional similarity since such similarity is
often not revealed by sequence comparison. We will report
this analysis of RNA substructures separately (S.Pasquali,
H.H.Gan and T.Schlick, unpublished).

Search for novel RNAs: design and prediction

Graphical enumeration demonstrates that the RNA topology
space is immensely smaller than the nucleic acid sequence
space, which makes the search for novel RNAs plausible.
Moreover, our survey and clustering analysis of existing
RNAs help narrow this search by indicating the probable RNA
topological characteristics (Fig. 8). However, how can we
apply these tools and analyses to design RNAs in practice?
The gap between candidate topologies and sequence proposals
is clearly large, not to mention prediction of their 3D
structures and functional properties.

We offer the following strategy for designing tree
topologies not found in RNA databases as candidate templates
for the design of RNA sequences. The hierarchical or modular
nature of RNAs can be exploited for determining the

Figure 10. Three examples of novel 2D topologies with six vertices that have been constructed using a modular design approach from existing RNA
fragments/submotifs. The target topologies (upper panels) and their designed 2D folds (lower panels) at the lowest energy states are shown. In the left panel,
the 2D fold has ®ve basic fragments labeled L1, ..., L5 which were taken from tRNAs of various organisms. We used MFOLD to generate the 2D RNA folds.
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sequences that lead to target motifs by assembling fragments
or `building blocks' from existing RNAs; the outcome of this
assembly can be tested to a ®rst approximation using
secondary folding algorithms. Ultimately, the structures
must be determined experimentally.

We illustrate our design approach in Figure 10 with three
examples of designed sequences that fold to the novel 2D
topologies we targeted. These targets originate from the
missing motifs of V = 6 (see Fig. 7). The designed sequences
by modular assembly are then folded using Zuker's MFOLD
algorithm (32). In fact, the designed sequences yield the target
topologies with the lowest free energy. The sequence lengths of
the three designed sequences only vary between 75 and 100 nt,
but they have distinct topological characteristics: two three-
stem junctions, four-stem junction and ®ve-stem junction.
Other design experiments in our laboratory suggest that
determining the sequence from the target motif by modular
library design is not di®cult as judged by results of 2D folding
algorithms. Of course, we cannot yet comment on the resulting
tertiary structures at this stage, but this clearly represents a
future goal. Work is underway to test these proposals by
instrumentation. In particular, we propose that the combination
of graph theory, sequence design protocol and in vitro selection
is potentially a productive approach for ®nding novel RNAs.

SUMMARY AND CONCLUSIONS

We have developed two graphical representations of RNA
secondary structures to allow exploration of RNA's structural
repertoire. We use tree graphs for representing RNA tree
structures and the more general dual graphs for representing
both RNA trees and pseudoknots. Such graphical representa-
tions provide a basis for enumerating, classifying, comparing
and designing RNA motifs.

We estimate the number of distinct RNA tree motifs based
on the Cayley and Harary±Prins enumeration theorems. These
theorems imply that the RNA topology space is much smaller
than the sequence space, which renders our topological
approach potentially effective for ®nding novel RNAs. Our
surveys of existing RNAs identi®ed a number of motifs in
nature (Figs 5±7) but showed that many hypothetical motifs do
not exist. Since not all enumerated motifs are probable RNAs,
energetic, functional and evolutionary aspects of RNA folds
must be taken into consideration to provide better future
estimates of RNA's repertoire.

The graph theory approach for RNA trees and pseudoknots
also aids in the search for structural similarity between RNAs
using the concept of graph isomorphism. Signi®cantly, we
found many occurrences of the 5S rRNA motif in several large
RNAs (including 16S and 23S rRNAs) and the HDV motif in
tmRNA (Fig. 9). Such structural analyses may assist in the
identi®cation of functional similarity between RNAs.

The search for novel RNAs represents another intriguing
area of application of graph theory. We suggest the promise of
graph theory for the design of novel RNAs by showing that
missing 2D motifs can be designed by modular assembly of
existing RNAs' subunits in combination with 2D folding
algorithms. This design protocol is likely to be effective when
the designed motifs have the topological characteristics of
natural RNAs, i.e., in the range between highly branched and
non-branched RNA structures (see Fig. 8) and contain a

typical distribution of paired and unpaired bases among stems,
loops, bulges and junctions as we recently estimated based on
large ribosomal RNAs (J. Zorn et al., unpublished). However,
the problem of bridging the gap between 2D and 3D structures
remains a challenge for future investigations (58).

To integrate our efforts of cataloguing, comparing, and
predicting RNA structures, we are currently building a
database for archiving naturally occurring and hypothetical
RNA motifs. We hope that the database will be exploited for
topology searches, functional annotation of RNA sequences
and RNA design. We invite interested researchers to contact
us with suggestions and further information.

SUPPLEMENTARY MATERIAL

A glossary that de®nes various terms in RNA structure and
graph theory is available as Supplementary Material at NAR
Online.
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APPENDIX

A. Relationship between tree and dual graphs

RNA tree structures can be represented as either tree or dual
graphs (see examples in Fig. 4); however, only dual graphs can
represent pseudoknots. Here, we elaborate on the relation
between these two graphical representations of RNA tree
structures. For this purpose, we compare in Table 2 the tree
and dual graph rules for vertices and edges.
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As shown, a vertex in a tree graph represents an RNA loop/
bulge/junction/ends, whereas it represents in a dual graph a
double-helical stem; similarly, an edge in dual graphs (e.g., Ç)
denotes a connecting strand between stems at loop/bulge/
junction region, whereas an edge (Ð) in tree graphs is a
double-helical stem. (Since these different meanings for the
graph vertices and edges in the tree and dual graph represen-
tations may be a potential source of confusion, it is important
to treat these two schemes for representing RNAs separately.)
Another difference is that the 3¢ and 5¢ ends are not
represented as graphical elements in dual graphs but are a
vertex in tree graphs. This means that dual graphs can only be
converted into tree graphs with loss information about the
locations of the ends. In this respect, the dual representation of
RNA is more precise than the tree representation. Another
difference between these representations is that a V-vertex tree
becomes a (V ±1)-vertex dual graph; for example, a ®ve-vertex
tRNA tree becomes a four-vertex dual graph in the dual
representation (see Fig. 4). Recall that although the dual
representation suf®ces for RNA structures, the major advan-
tage of the tree representation is that many mathematical
results in graph theory can be exploited for the characteriza-
tion, enumeration and construction of trees (46).

B. Limitations of RNA graphical representations

The tree and dual graph rules (T1±T4 and D1±D3) reduce
RNA secondary structures to graphical objects in which only
the connectivity of the secondary elements is speci®ed. Such
schematic representations necessarily retain only minimal
information about the length of stems, the size of junctions and
the number of unmatched nucleotides in loops and bulges;
these are non-topological aspects of RNA. Still, the average
dimensions of corresponding secondary elements can be
estimated based on known RNA structures. For tree repre-
sentations, there are ~20 nt/edge, and the average size of an
RNA graph can be estimated on that basis. For example, a
small four-edge tRNA graph has ~80 nt. This estimate
becomes more accurate for larger RNAs.

Another issue is the accuracy of our graphical representa-
tions. Subtle differences in RNA secondary topologies can
sometimes lead to the same dual graph. For example, Figure 2
shows the same dual graphs (column F) for two pairs of RNA
examples (rows 1, 2 and 3, 4 of column E). RNA examples in
rows 1 and 2 involve the hairpin-like structure representing
two single-helical stem RNAs with different topological
connectivities. Examples in rows 3 and 4 involve the three-
vertex graph representing a three-stem junction and a
secondary topology with three consecutive stems. The ambi-
guity in representing RNA topologies can be resolved by using
directed graphs or digraphs. [Digraphs have been used for
modeling food web of an ecosystem, Markov processes and
many other applications involving analysis of networks (46)].

Digraphs remove topological ambiguity by specifying the
direction of each edge. By representing the RNA examples in
Figure 2 as digraphs (column G), the topologies of the second
RNA pair (rows 3, 4 of column E) can be distinguished;
however, the ®rst pair (rows 1, 2 of column E) remains
indistinguishable, implying that more detailed aspects of their
structures need to be modeled to differentiate their topologies.
Since the digraphs contain more information than simple dual

graphs, the number of digraphs grows more rapidly with
vertex number (47) compared with dual graphs, making it
essential to use computer algorithms to analyze such graphs.
Clearly, RNA secondary structures can be represented using
various graphical representations depending on the level of
speci®city required. Such representations are worth exploring
in future investigations.

C. Algebraic properties of RNA topologies

RNA bridges, trees and pseudoknots are special classes of 2D
graphs or networks. For any 2D network, the number of
vertices (V), number of edges (E) and number of faces (F) (or
cycle rank) are related by Euler's formula in graph theory (47).
Indeed, by Euler's formula, which is a basis of algebraic
topological graph theory, we have the simple relation

V ± E + F = 1. 7

For polyhedrons, Euler's formula becomes V ± E + F = 2. We
now translate this important relationship to RNA features
known to structural biologists. Speci®cally, we use equation 7
to relate the number of loops/bulges (L), junctions (J) and
stems (S) for any RNA secondary structure.

Since tree graphs have no faces (F = 0), we can simplify
equation 7 to read

E = V ± 1. 8

The secondary elements of RNA trees (L, J and S) are related
to vertices (V) and edges (E) by the formulas

S = E,
V = L + J + 1, 9

since stems (S) are edges (E) and loops/bulges (L) and
junctions (J) are vertices (V), and the chain ends are
considered a vertex (add 1 to V). We thus combine equations
8 and 9 to relate the loop/bulge, junction and stem numbers of
RNA trees as:

L + J = S. 10

How does this relation hold for existing RNAs? Our survey of
RNA secondary structures (i.e., tRNA, RNase and 5S, 16S,
23S rRNAs) shows that the ratio (L + J)/S is indeed unity for
each RNA, implying that equation 10 accurately describes
RNA tree structures. Figure 4 illustrates three secondary
structures of single-strand RNA, tRNA and 5S rRNA obeying
formula 10. For example, the tRNA molecule is described by L
= 3 loops, J = 1 junction and S = 4 stems, as their sum.

We now show that equation 10 also holds for RNA dual
graphs. Recall that for dual graphs (see dual graph rules
section)

E = 2V ±1. 11

Substituting this relation into equation 7 yields

F = V. 12

Equations 11 and 12 form the de®ning relations of RNA dual
graphs. For RNA dual graphs, the following relations hold

V = S, 13

F = L + J 14
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because stems (S) are vertices (V) and loops/junctions (L, J)
are faces (F). Equations 12 and 13 imply that equation 10 is
also true for RNA dual graphs. Equation 10 thus relates the
secondary elements of any 2D RNA topology. It is useful for
de®ning the number of loops, junctions or stems when one of
these numbers is missing.

D. An algorithm for ®nding structurally similar graphs

Here we introduce topological invariants for graphs and use
them to test structural similarity or isomorphism of RNA
graphs, which is the basis of our computational scheme for
®nding RNA motifs within larger RNAs. Topological
invariants are numbers that contain information about the
connectivity of graphs; two identical graphs have the same
topological invariants. To calculate topological invariants, we
use the adjacency matrix to quantitatively represent graph
connectivity (46). An adjacency matrix, whose columns and
rows correspond to vertex labels of the graph, speci®es the
connectivity between graph vertices. For example, if the i and
j vertices of a graph are connected by two edges, then the (i, j)
element of the matrix is 2.

Our general procedure for calculating the topological
number of a graph is to decompose the graph into all possible
two, three, four-vertex, etc. con®gurations in a manner similar
to atomic interactions in physics and chemistry. For each
graph, we associate the topological numbers S2, S3, S4, ¼ for
two, three, four-vertex, etc. con®gurations; the topological
numbers are calculated using the adjacency matrix, as
elaborated below. Isomorphic (structurally equivalent)
graphs have the same topological numbers S2, S3, S4, ¼. In
practice, we only consider low-order topological numbers S2,
S3 and S4 since these are more easily computed than
higher-order ones.

We de®ne S2, for example, as follows:

�S2�2 �
XNv

i� 1

1

Nv ÿ 1

XNv

j� 1

eij

 !2

15

where eij is the `coupling' parameter between the vertices i and
j. We set eij = dij where dij is the number of edges separating
vertices i, j. On the other hand, if the vertices i, j are connected
by more than one edge, we set eij = 1/cij where cij is the number
of connecting edges between the vertices. For i = j, we assign a
zero coupling value, i.e., eii = 0, which implies that terminal
loops do not contribute to the topological invariant. The above
procedures can be generalized to compute S3, S4 and so on.

We test the similarity between RNA structures or substruc-
tures by comparing their topological numbers. In most cases
comparing S2 values is a su®cient test, but subtler dissimilar-
ities between graphs require higher-order topological numbers
to discriminate.

By using graph topological numbers to test the similarity or
dissimilarity between RNA structures, we reduce the compu-
tational cost from about N! to

H�N1;N2� �
XN2

k�N1 ÿN2

k!

N2!�k ÿ N2 � 1�! 16

where N1 and N2 (< N1) are sizes of the (square) adjacency
matrices of the two graphs compared. This computational cost
is associated with the number of ways of constructing N2 3 N2

submatrices within the larger N1 3 N1 matrix. Assuming the
worst case situation when N2 = N1/2, our computational
scheme can compare graphs having up to 40 vertices, which
correspond to ~800 nt RNA.
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